Learn More
Here we describe a novel wearable feedback apparatus for lower-limb amputees. The system is based on three modules: a pressure-sensitive insole for the measurement of the plantar pressure distribution under the prosthetic foot during gait, a computing unit for data processing and gait segmentation, and a set of vibrating elements placed on the thigh skin.(More)
The human hip joint is normally represented as a spherical hinge and its centre of rotation is used to construct femoral anatomical axes and to calculate hip joint moments. The estimate of the hip joint centre (HJC) position using a functional approach is affected by stereophotogrammetric errors and soft tissue artefacts. The aims of this study were (1) to(More)
This study introduces a new method of extracting initial and final contact gait time events from vertical acceleration, measured with one waist mounted inertial measurement unit, by means of continuous wavelet transforms. The method was validated on 18 young healthy subjects and compared to two others available in the literature. Of the three methods(More)
This paper introduces the design and development of a novel pressure-sensitive foot insole for real-time monitoring of plantar pressure distribution during walking. The device consists of a flexible insole with 64 pressure-sensitive elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, and wireless transmission to a(More)
The aim of this study was the fine tuning of a Kalman filter with the intent to provide optimal estimates of lower trunk orientation in the frontal and sagittal planes during treadmill walking at different speeds using measured linear acceleration and angular velocity components represented in a local system of reference. Data were simultaneously collected(More)
We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes(More)
This paper presents algorithms for detection of gait initiation and termination using wearable inertial measurement units and pressure-sensitive insoles. Body joint angles, joint angular velocities, ground reaction force and center of plantar pressure of each foot are obtained from these sensors and input into supervised machine learning algorithms. The(More)
In the movement analysts community, the assessment of the displacement of skin photogrammetric markers relative to the underlying bone (soft tissue displacement, STD) is considered to be a priority. The aim of this study is to present a non-invasive method that allows for the characterization of STD for any marker location, subject, and motor task. In(More)
We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to(More)
This paper presents the preliminary design of a new dexterous upper-limb prosthesis provided with a novel anthropomorphic hand, a compact wrist based on bevel gears and a modular forearm able to cover different levels of upper-limb amputations. The hand has 20 DoFs and 11 motors, with a dexterous three fingered subsystem composed by a fully actuated thumb,(More)