Marco Cosentino Lagomarsino

Learn More
The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both(More)
The adaptive evolution of large asexual populations is generally characterized by competition between clones carrying different beneficial mutations. Interference slows down the adaptation speed and makes the theoretical description of the dynamics more complex with respect to the successional occurrence and fixation of beneficial mutations typical of small(More)
Two colloidal spheres are maintained in oscillation by switching the position of an optical trap when a sphere reaches a limit position, leading to oscillations that are bounded in amplitude but free in phase and period. The interaction between the oscillators is only through the hydrodynamic flow induced by their motion. We prove that in the absence of(More)
BACKGROUND Protein domains can be used to study proteome evolution at a coarse scale. In particular, they are found on genomes with notable statistical distributions. It is known that the distribution of domains with a given topology follows a power law. We focus on a further aspect: these distributions, and the number of distinct topologies, follow(More)
Motivated by the formation of ringlike filament structures in the cortex of plant and animal cells, we study the dynamics of a two-dimensional layer of cytoskeletal filaments and motor proteins near a surface by a general continuum theory. As a result of active processes, dynamic patterns of filament orientation and density emerge via instabilities. We show(More)
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating(More)
Focusing on the DNA-bridging nucleoid proteins Fis and H-NS, and integrating several independent experimental and bioinformatic data sources, we investigate the links between chromosomal spatial organization and global transcriptional regulation. By means of a novel multi-scale spatial aggregation analysis, we uncover the existence of contiguous clusters of(More)
Gene duplication is a key mechanism in evolution for generating new functionality, and it is known to have produced a large proportion of genes. Duplication mechanisms include small-scale, or "local", events such as unequal crossing over and retroposition, together with global events, such as chromosomal or whole genome duplication (WGD). In particular,(More)
We generated a genome-wide replication profile in the genome of Lachancea kluyveri and assessed the relationship between replication and base composition. This species diverged from Saccharomyces cerevisiae before the ancestral whole genome duplication. The genome comprises eight chromosomes among which a chromosomal arm of 1 Mb has a G + C-content much(More)
BACKGROUND Gene duplication, a major evolutionary path to genomic innovation, can occur at the scale of an entire genome. One such "whole-genome duplication" (WGD) event among the Ascomycota fungi gave rise to genes with distinct biological properties compared to small-scale duplications. RESULTS We studied the evolution of transcriptional interactions of(More)