Learn More
Early anatomically based models of language consisted of an arcuate tract connecting Broca's speech and Wernicke's comprehension centers; a lesion of the tract resulted in conduction aphasia. However, the heterogeneous clinical presentations of conduction aphasia suggest a greater complexity of perisylvian anatomical connections than allowed for in the(More)
This work reports the use of diffusion tensor magnetic resonance tractography to visualize the three-dimensional (3D) structure of the major white matter fasciculi within living human brain. Specifically, we applied this technique to visualize in vivo (i) the superior longitudinal (arcuate) fasciculus, (ii) the inferior longitudinal fasciculus, (iii) the(More)
Lateralization of language to the left hemisphere is considered a key aspect of human brain organization. We used diffusion tensor MRI to perform in vivo virtual dissection of language pathways to assess the relationship between brain asymmetry and cognitive performance in the normal population. Our findings suggest interhemispheric differences in direct(More)
Diffusion tensor MRI (DT-MRI) provides information about the structural organization and orientation of white matter fibres and, through the technique of 'tractography', reveals the trajectories of cerebral white matter tracts. We used tractography in the living human brain to address the disputed issue of the nature of occipital and temporal connections.(More)
It has been suggested that people with autistic spectrum disorder (ASD) have altered development (and connectivity) of limbic circuits. However, direct evidence of anatomical differences specific to white matter pathways underlying social behaviour and emotions in ASD is lacking. We used Diffusion Tensor Imaging Tractography to compare, in vivo, the(More)
Diffusion tensor imaging (DTI) tractography allows perform virtual dissections of white matter pathways in the living human brain. In 2002, Catani et al. published a method to reconstruct white matter pathways using a region of interest (ROI) approach. The method produced virtual representations of white matter tracts faithful to classical post-mortem(More)
Diffusion tensor magnetic resonance imaging (DT-MRI) is unique in providing information about both the structural integrity and the orientation of white matter fibers in vivo and, through "tractography", revealing the trajectories of white matter tracts. DT-MRI is therefore a promising technique for detecting differences in white matter architecture between(More)
Few themes have been more central to neurological models of aphasia than the disconnection paradigm and the role of the arcuate fasciculus. Introduced by luminaries of 19th Century neurology and resurrected by the charismatic work of Norman Geschwind, the disconnection theme has triggered spectacular advances of modern understanding of language and aphasia.(More)
Right hemisphere dominance for visuospatial attention is characteristic of most humans, but its anatomical basis remains unknown. We report the first evidence in humans for a larger parieto-frontal network in the right than left hemisphere, and a significant correlation between the degree of anatomical lateralization and asymmetry of performance on(More)
In a brain composed of localized but connected specialized areas, disconnection leads to dysfunction. This simple formulation underlay a range of 19th century neurological disorders, referred to collectively as disconnection syndromes. Although disconnectionism fell out of favour with the move against localized brain theories in the early 20th century, in(More)