Marco Castellaro

Learn More
In this study, dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) was used to quantify the cerebral blood flow (CBF), the cerebral blood volume (CBV), and the mean transit time (MTT) and to analyze the changes in cerebral perfusion associated with the cortical lesions in 44 patients with relapsing-remitting multiple sclerosis. The cortical(More)
BACKGROUND Both gray-matter (GM) atrophy and lesions occur from the earliest stages of Multiple Sclerosis (MS) and are one of the major determinants of long-term clinical outcomes. Nevertheless, the relationship between focal and diffuse GM damage has not been clarified yet. Here we investigate the regional distribution and temporal evolution of cortical(More)
BACKGROUND Although temporal lobe pathology may explain some of the symptoms of multiple sclerosis (MS), its role in the pathogenesis of seizures has not been clarified yet. OBJECTIVES To investigate the role of temporal lobe damage in MS patients suffering from epilepsy, by the application of advanced multimodal 3T magnetic resonance imaging (MRI)(More)
PURPOSE To present the stable spline (SS) deconvolution method for the quantification of the cerebral blood flow (CBF) from dynamic susceptibility contrast MRI. METHODS The SS method was compared with both the block-circulant singular value decomposition (oSVD) and nonlinear stochastic regularization (NSR) methods. oSVD is one of the most popular(More)
A consolidated practice in cognitive neuroscience is to explore the properties of human visual working memory through the analysis of electromagnetic signals using cued change detection tasks. Under these conditions, EEG/MEG activity increments in the posterior parietal cortex scaling with the number of memoranda are often reported in the hemisphere(More)
In dynamic Positron Emission Tomography (PET) studies, compartmental models provide the richest information on the tracer kinetics of the tissue. Inverting such models at the voxel level is however quite challenging due to the low signal-to-noise ratio of the time activity curves. In this study, we propose the use of a Variational Bayesian (VB) approach to(More)
PURPOSE QUASAR arterial spin labeling (ASL) permits the application of deconvolution approaches for the absolute quantification of cerebral perfusion. Currently, oscillation index regularized singular value decomposition (oSVD) combined with edge-detection (ED) is the most commonly used method. Its major drawbacks are nonphysiological oscillations in the(More)
In order to assess brain perfusion, one of the available methods is the estimation of parameters such as cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) from Dynamic Susceptibility Contrast MRI (DSC-MRI). This estimation requires both high temporal and spatial resolution to capture the rapid tracer kinetic and detect small(More)
  • 1