Learn More
We describe a protocol for fully automated detection and segmentation of asymmetric, presumed excitatory, synapses in serial electron microscopy images of the adult mammalian cerebral cortex, taken with the focused ion beam, scanning electron microscope (FIB/SEM). The procedure is based on interactive machine learning and only requires a few labeled(More)
α-Synuclein (α-syn) is a presynaptic protein present at most nerve terminals, but its function remains largely unknown. The familial forms of Parkinson's disease associated with multiplications of the α-syn gene locus indicate that overabundance of this protein might have a detrimental effect on dopaminergic transmission. To investigate this hypothesis, we(More)
This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened.(More)
Future progress in neuroscience hinges on reconstruction of neuronal circuits to the level of individual synapses. Because of the specifics of neuronal architecture, imaging must be done with very high resolution and throughput. While Electron Microscopy (EM) achieves the required resolution in the transverse directions, its depth resolution is a severe(More)
This protocol describes how in vivo-imaged dendrites and axons in adult mouse brains can subsequently be prepared and imaged with focused ion beam scanning electron microscopy (FIBSEM). The procedure starts after in vivo imaging with chemical fixation, followed by the identification of the fluorescent structures of interest. Their position is then(More)
Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning(More)
Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on the random pyramidal morphology of transparent zinc oxide(More)
Scanning Electron Microscopy (SEM) is an invaluable tool for biologists and neuroscientists to study brain structure at the intracellular level. While able to image tissue samples with up to 5 nm isotropic resolution, image acquisition is prohibitively slow and limits the size of processed samples. In this work, we propose a novel approach to speeding up(More)
Acquisition of three-dimensional (3D) spectral data is nowadays common using many different microanalytical techniques. In order to proceed to the 3D reconstruction, data processing is necessary not only to deal with noisy acquisitions but also to segment the data in term of chemical composition. In this article, we demonstrate the value of multivariate(More)