Learn More
In vitro cultured neuronal networks coupled to microelectrode arrays (MEAs) constitute a valuable experimental model for studying changes in the neuronal dynamics at different stages of development. After a few days in culture, neurons start to connect each other with functionally active synapses, forming a random network and displaying spontaneous(More)
Corpus callosum (CC) is involved in the performance of bimanual motor tasks. We asked whether its functional role could be investigated by combining a motor behavioral study on bimanual movements in multiple sclerosis (MS) patients with a quantitative magnetic resonance diffusion tensor imaging (DTI) analysis of CC, which is shown to be damaged in this(More)
To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor(More)
We have previously shown in normal subjects that motor adaptation to imposed visual rotation is significantly enhanced when tested few days later. This occurs through a process of sleep-dependent memory consolidation. Here we ascertained whether patients with Parkinson's disease (PD) learn, improve, and retain new motor skills in the same way as normal(More)
In the human brain, homologous regions of the primary motor cortices (M1s) are connected through transcallosal fibers. Interhemispheric communication between the two M1s plays a major role in the control of unimanual hand movements, and the strength of this connection seems to be dependent on arm activity. For instance, a lesion in the M1 can induce an(More)
The effect of a strenuous treadmill exercise on body stability and the mechanisms associated with it have been studied with two different experimental protocols. The former investigation was based on stabilometric and metabolic measurements performed in basal condition and after a strenuous treadmill exercise whilst the latter dealt with the study of the(More)
We tested the hypothesis that transcranial magnetic stimulation (TMS), in addition to its inhibitory action on the corticospinal output, can also exert some inhibitory effect on the transcallosal system connecting the two motor cortices. In seven normal subjects, instructed to keep their right opponens pollicis (OP) muscle fully relaxed and their left OP(More)
Limb immobilization and nonuse are well-known causes of corticomotor depression. While physical training can drive the recovery from nonuse-dependent corticomotor effects, it remains unclear if it is possible to gain access to motor cortex in alternative ways, such as through motor imagery (MI) or action observation (AO). Transcranial magnetic stimulation(More)
The separate and combined depressive effects induced by vibration and standing on the soleus H-reflex have been studied by administering Achilles' tendon vibration in prone position and during stance. Without vibration, H-reflex amplitude was larger under prone than standing condition. Vibration reduced the reflex both in prone position and even more during(More)
BACKGROUND Freezing of gait (FOG) is a disabling impairment for people with Parkinson's disease (PD) and may not respond to medications. The effectiveness of physical therapy for FOG is debatable. Action observation strategies to overcome FOG may enhance physical training. OBJECTIVE To assess whether action observation, combined with practicing the(More)