Marco Bonesi

  • Citations Per Year
Learn More
There is an increasing need for a robust, simple to use, non-invasive imaging technology to follow tissue-engineered constructs as they develop. Our aim was to evaluate the use of swept-source optical coherence tomography (SS-OCT) to image tissue-engineered skin as it developed over several weeks. Tissue-engineered skin was produced using both(More)
We present a dual-beam Doppler optical coherence tomography system for visualizing the microvasculature within the retina. The sample arm beams from two identical spectral domain optical coherence tomography (SD-OCT) systems are combined such that there is a small horizontal offset between them at the retina. Thereby we record two tomograms which are(More)
OBJECTIVE To investigate a novel optical method to determine the three dimensional (3-D) structure of articular cartilage collagen non-destructively. METHODS Polarization-sensitive optical coherence tomography was used to determine the apparent optical birefringence of articular cartilage for a number of different illumination directions. A quantitative(More)
We present a new method to automatically segment the thickness of the choroid in the human eye by polarization sensitive optical coherence tomography (PS-OCT). A swept source PS-OCT instrument operating at a center wavelength of 1040 nm is used. The segmentation method is based entirely on intrinsic, tissue specific polarization contrast mechanisms. In a(More)
PURPOSE To demonstrate the ability of a new high-speed polarization-sensitive optical coherence tomography (PS-OCT) system for retinal imaging at 1040 nm. METHODS A new polarization-sensitive swept source OCT system in the 1 μm wavelength range is used to image the retina of healthy volunteers. The instrument is operated at an A-scan rate of 100 kHz which(More)
Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination(More)
The objective of this study was to develop a method based on polarization-sensitive optical coherent tomography (PSOCT) for the imaging and quantification of degenerative changes associated with Achilles tendon rupture. Ex vivo PSOCT examinations were performed in 24 patients. The study involved samples from 14 ruptured Achilles tendons, 4 tendinopathic(More)
We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser with active spectral shaping which enables the use of forward(More)
We report on a new swept source polarization sensitive optical coherence tomography scan engine that is based on polarization maintaining (PM) fiber technology. The light source is a Fourier domain mode locked laser with a PM cavity that operates in the 1300 nm wavelength regime. It is equipped with a PM buffer stage that doubles the fundamental sweep(More)
We demonstrate noninvasive structural and microvascular contrast imaging of human skin in vivo, using phase difference swept source OCT angiography (pOCTA). The pOCTA system employs an akinetic, all-semiconductor, highly phase-stable swept laser source which operates at 1340 nm central wavelength, with 37 nm bandwidth (at 0 dB region) and 200 kHz A-scan(More)