Learn More
MOTIVATION Quality assessment of protein structures is an important part of experimental structure validation and plays a crucial role in protein structure prediction, where the predicted models may contain substantial errors. Most current scoring functions are primarily designed to rank alternative models of the same sequence supporting model selection,(More)
Protein structure homology modelling has become a routine technique to generate 3D models for proteins when experimental structures are not available. Fully automated servers such as SWISS-MODEL with user-friendly web interfaces generate reliable models without the need for complex software packages or downloading large databases. Here, we describe the(More)
MOTIVATION Developers of new methods in computational structural biology are often hampered in their research by incompatible software tools and non-standardized data formats. To address this problem, we have developed OpenStructure as a modular open source platform to provide a powerful, yet flexible general working environment for structural(More)
MOTIVATION The assessment of protein structure prediction techniques requires objective criteria to measure the similarity between a computational model and the experimentally determined reference structure. Conventional similarity measures based on a global superposition of carbon α atoms are strongly influenced by domain motions and do not assess the(More)
Research projects in structural biology increasingly rely on combinations of heterogeneous sources of information, e.g. evolutionary information from multiple sequence alignments, experimental evidence in the form of density maps and proximity constraints from proteomics experiments. The OpenStructure software framework, which allows the seamless(More)
MOTIVATION Membrane proteins are an important class of biological macromolecules involved in many cellular key processes including signalling and transport. They account for one third of genes in the human genome and >50% of current drug targets. Despite their importance, experimental structural data are sparse, resulting in high expectations for(More)
Motivation: Developers of new methods in computational structural biology are often hampered in their research by incompatible software tools and non-standardized data formats. To address this problem, we have developed OpenStructure as a modular open source platform to provide a powerful, yet flexible general working environment for structural(More)
  • 1