Marco Bernardoni

Learn More
GaN-based RF transistors offer impressive power densities, although to achieve the maximum potential offered by GaN, thermal management must be improved beyond the current GaN-on-SiC devices. By using diamond, rather than SiC substrates, transistor thermal resistance can be significantly reduced. It is important to experimentally verify thermal resistance,(More)
Thermal conductivity of the substrate affects the performance of high power RF devices. It is a dominant limiting factor in current state-of- the-art GaN HEMTs on SiC substrate. Due to high thermal conductivity, diamond substrate is an attractive alternative for GaN HEMTs. We have developed device quality GaN-on-diamond wafers using CVD diamond and(More)
Replacing SiC substrates with the highest thermal conductivity material available, diamond (κ up to 2000 W/mK), will result in significantly lower thermal resistance AlGaN/GaN HEMTs. In this work we combine Raman thermography and thermal simulation to assess the thermal resistance of state-of-the-art GaN-ondiamond HEMTs. INTRODUCTION The RF output power(More)
The following short paper would like to deal with the topic of 2012 Forum Junge Theologie from the perspective of the dialogue between theology and science, where a major question continues to be whether both disciplines can be placed in a genuine position of dialogue and interaction. Focusing on the core question of methodology that lies at the heart of(More)
  • 1