Marco Beccani

Learn More
—Palpating tissues and organs to identify hidden tumors or to detect buried vessels is not a viable option in laparoscopic surgery due to lack of force feedback. So far, research toward restoring tactile and kinesthetic sensations in minimally invasive surgery has focused on the distal sensing element or on the proximal rendering of haptic cues. In this(More)
In an open surgery, identification of precise margins for curative tissue resection is performed by manual palpation. This is not the case for minimally invasive and robotic procedures, where tactile feedback is either distorted or not available. In this paper, we introduce the concept of intraoperative wireless tissue palpation. The wireless palpation(More)
—We propose local magnetic actuation (LMA) as an approach to robotic actuation for surgical instruments. An LMA actuation unit consists of a pair of diametrically magnetized single-dipole cylindrical magnets, working as magnetic gears across the abdominal wall. In this study, we developed a dynamic model for an LMA actuation unit by extending the theory(More)
Over the last decade, researchers have explored the design space of medical capsule robots: devices that operate autonomously within the human body and can monitor, diagnose, prevent, and cure diseases. Medical capsule robots are severely resource constrained devices in size, power, and computational capacity. As such, the design process is time consuming(More)
Gastric cancer is the second leading cause of cancer death worldwide and screening programs have had a significant impact on reducing mortality. The majority of cases occur in low- and middle-income countries (LMIC), where endoscopy resources are traditionally limited. In this paper, we introduce a platform designed to enable inexpensive gastric screening(More)
Minimally invasive surgical techniques are becoming popular due to their enhanced patient benefits. Less invasive procedures can be achieved with the use of wireless Medical Capsule Robots (MCRs). MCRs are low powered and small in size and can be used for physiological parameter monitoring, therapy delivery, and biopsy sampling. Designing MCRs from the(More)
  • 1