Marco Baiesi

Learn More
We propose a metric to quantify correlations between earthquakes. The metric consists of a product involving the time interval and spatial distance between two events, as well as the magnitude of the first one. According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a classification of events as(More)
A generalized fluctuation-response relation is found for thermal systems driven out of equilibrium. Its derivation is independent of many details of the dynamics, which is only required to be first order. The result gives a correction to the equilibrium fluctuation-dissipation theorem, in terms of the correlation between observable and excess in dynamical(More)
Systems out of equilibrium, in stationary as well as in nonstationary regimes, display a linear response to energy impulses simply expressed as the sum of two specific temporal correlation functions. There is a natural interpretation of these quantities. The first term corresponds to the correlation between observable and excess entropy flux yielding a(More)
Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible is introduced. By applying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which(More)
There remains a useful relation between diffusion and mobility for a Langevin particle in a periodic medium subject to nonconservative forces. The usual fluctuationdissipation relation easily gets modified and the mobility matrix is no longer proportional to the diffusion matrix, with a correction term depending explicitly on the (nonequilibrium) forces. We(More)
We consider a particle dragged through a medium at constant temperature as described by a Langevin equation with a time-dependent potential. The time dependence is specified by an external protocol. We give conditions on potential and protocol under which the fluctuations of the dissipative work satisfy an exact symmetry for all times. We also present(More)
We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The(More)
We invoke a metric to quantify the correlation between any two earthquakes. This provides a simple and straightforward alternative to using space-time windows to detect aftershock sequences and obviates the need to distinguish main shocks from aftershocks. Directed networks of earthquakes are constructed by placing a link, directed from the past to the(More)
For a model of DNA denaturation, exponents describing the distributions of denaturated loops and unzipped end segments are determined by exact enumeration and by Monte Carlo simulations in two and three dimensions. The loop distributions are consistent with first-order thermal denaturation in both cases. Results for end segments show a coexistence of two(More)
– A “sandpile” cellular automaton achieves complex temporal correlations, like a 1/f spectrum, if the position where it is perturbed diffuses slowly rather than changing completely at random, showing that the spatial correlations of the driving are deeply related to the intermittent activity. Hence, recent arguments excluding the relevance of self-organized(More)