Marco Alberto Carlo Potenza

Learn More
We implemented the heterodyne near-field scattering (HNFS) technique [Appl. Phys. Lett. 81, 4109 (2002)]], showing that it is a fairly valid alternative to traditional elastic low-angle light scattering and quite suitable for studying complex fluids such as colloidal systems. With respect to the original work, we adopted a different data reduction scheme,(More)
We present a novel method to map the two-dimensional transverse coherence of an x-ray beam using the dynamical near-field speckles formed by scattering from colloidal particles. Owing to the statistical nature of the method, the coherence properties of synchrotron radiation from an undulator source is obtained with high accuracy. The two-dimensional complex(More)
By using the critical Casimir force, we study the attractive strength dependent aggregation of colloids with and without gravity by means of near field scattering. Significant differences were seen between microgravity and ground experiments, both in the structure of the formed fractal aggregates as well as in the kinetics of growth. In microgravity purely(More)
We present a method based on the optical theorem that yields absolute, calibration free estimates of the optical thickness of scattering particles. The thickness is determined from the phase delay of the zero angle scattered wave. It uses a heterodyne scattering scheme operating in the Raman-Nath approximation. The phase is determined by the position of(More)
The behavior of nanoparticles in biological systems is determined by their dimensions, size distribution, shape, surface chemistry, density, drug loading and stability; the characterization of these parameters in realistic conditions and the possibility to follow their evolution in vitro and in vivo are, in most of the cases, far from the capabilities of(More)
Microgravity research in space is a complex activity where the often scarce resources available for the launch, accommodation, and operation of instrumentation call for a careful experiment planning and instrument development. In this paper we describe a module of the Selectable Optical Diagnostic Instrument, that has been designed as a compact optical(More)
We present a novel Dynamic Depolarized Scattering method based on a tight confocal, zero scattering angle, heterodyne scheme. The method is highly immune from parasitic multiple-scattering contributions, so that it can operate with non-index-matched samples presenting large turbidity. It provides measurements of both rotational and translational diffusion(More)
By exploiting analogical optical modeling of the radiation emitted by ultrarelativistic electrons undergoing betatron oscillations, we demonstrate peculiar properties of the spatial coherence through an interferometric method reminiscent of the classical Young's double slit experiment. The expected effects due to the curved trajectory and the broadband(More)
We report in this work the first experimental verification of the asymmetric lateral coherence which is a measurement of the spatio-temporal coherence by using a wide-band Young interference experiment with a fixed off-axis slit. We demonstrate the coherence properties through the measurement of the real part of the coherence factor of thermal light. We(More)
The optical theorem is a very general law of scattering theory that has been discussed almost exclusively for spherically symmetric scatterers. In this work we present the extension to the case of anisotropic scatterers, by treating explicitly the problem within the Rayleigh-Gans approximation. Working formulas for the fluctuating components of the(More)