Learn More
Little is known on how different levels of population heterogeneity and different patterns of human mobility affect the course of pandemic influenza in terms of timing and impact. By employing a large-scale spatially explicit individual-based model, founded on a highly detailed model of the European populations and on a careful analysis of air and railway(More)
BACKGROUND Individual-based models can provide the most reliable estimates of the spread of infectious diseases. In the present study, we evaluated the diffusion of pandemic influenza in Italy and the impact of various control measures, coupling a global SEIR model for importation of cases with an individual based model (IBM) describing the Italian(More)
BACKGROUND In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal(More)
Influenza pandemics in the last century were characterized by successive waves and differences in impact and timing between different regions, for reasons not clearly understood. The 2009 H1N1 pandemic showed rapid global spread, but with substantial heterogeneity in timing within each hemisphere. Even within Europe substantial variation was observed, with(More)
We study how spontaneous reduction in the number of contacts could develop, as a defensive response, during an epidemic and affect the course of infection events. A model is proposed which couples an SIR model with selection of behaviours driven by imitation dynamics. Therefore, infection transmission and population behaviour become dynamical variables that(More)
During summer 2007 Italy has experienced an epidemic caused by Chikungunya virus - the first large outbreak documented in a temperate climate country - with approximately 161 laboratory confirmed cases concentrated in two bordering villages in North-Eastern Italy comprising 3,968 inhabitants. The seroprevalence was recently estimated to be 10.2%. In this(More)
Social contact patterns among individuals encode the transmission route of infectious diseases and are a key ingredient in the realistic characterization and modeling of epidemics. Unfortunately, the gathering of high quality experimental data on contact patterns in human populations is a very difficult task even at the coarse level of mixing patterns among(More)
Knowledge of social contact patterns still represents the most critical step for understanding the spread of directly transmitted infections. Data on social contact patterns are, however, expensive to obtain. A major issue is then whether the simulation of synthetic societies might be helpful to reliably reconstruct such data. In this paper, we compute a(More)
BACKGROUND The WHO suggested that governments stockpile, as part of preparations for the next influenza pandemic, sufficient influenza antiviral drugs to treat approximately 25% of their populations. Our aim is two-fold: first, since in many countries the antiviral stockpile is well below this level, we search for suboptimal strategies based on treatment(More)