Marcio S. de Queiroz

Learn More
In this paper, we present a new continuous control mechanism that compensates for uncertainty in a class of high-order, multi-input/multi-output nonlinear systems. The control strategy is based on limited assumptions on the structure of the system nonlinearities. A new Lyapunov-based stability argument is employed to prove semiglobal asymptotic tracking.
This paper examines the problem of link position tracking control of robot manipulators with bounded torque inputs. An adaptive, full-state feedback controller and an exact model knowledge, output feedback controller are designed to produce semi-global asymptotic link position tracking errors. Simulation results are provided to validate the theoretical(More)
This paper presents a solution to the problem of global, output feedback, tracking control of uncertain robot manipulators. Specifically, a desired compensation adaptation law plus a nonlinear feedback term coupled to a dynamic nonlinear filter is designed to produce global asymptotic link position tracking while compensating for parametric uncertainty and(More)
This paper presents an adaptive partial state feedback controller for rigid-link flexible-joint (RLFJ) robots. The controller compensates for parametric uncertainty throughout the entire mechanical system while only requiring measurement of link position and actuator position. To eliminate the need for measuring link velocity and actuator velocity a set of(More)
A new adaptive controller is developed for wheeled mobile robots with parametric uncertainty in the dynamic model. The main theoretical contribution is the modular manner in which the control law and parameter update law are designed. This feature allows for design flexibility in the selection of the update law, and can be exploited to improve the transient(More)