Marcio Luis Ferreira Nascimento

Learn More
Extensive data on the viscosity, covering 15 orders of magnitude, and crystal growth rate, covering seven orders of magnitude, of liquid diopside (CaO.MgO.2SiO(2)) were collected in a wide range of undercoolings from 1.10T(g) to 0.99T(m) (T(g) is the glass transition temperature and T(m) the melting point). The raw growth rate data were corrected for the(More)
An analysis of the kinetic coefficient of crystal growth U(kin), recently proposed by Ediger et al. [J. Chem. Phys. 128, 034709 (2008)], indicates that the Stokes-Einstein/Eyring (SE/E) equation does not describe the diffusion process controlling crystal growth rates in fragile glass-forming liquids. U(kin) was defined using the normal growth model and(More)
We collect and critically analyze extensive literature data, including our own, on three important kinetic processes--viscous flow, crystal nucleation, and growth--in lithium disilicate (Li(2)O·2SiO(2)) over a wide temperature range, from above T(m) to 0.98T(g) where T(g) ≈ 727 K is the calorimetric glass transition temperature and T(m) = 1307 K, which is(More)
The development of new fibrilar materials based on electrospinning (ES) technique has a notable history of nearly four centuries of discoveries and results. The eletrospinning manufacturing is one of the most widely reported methods for nanofiber (NF) manufacturing, providing security, high quality and productivity. In spite of the first patent about(More)
The respective contributions of the charge carrier concentration and mobility to the ionic conductivity in glasses remain an open question. In the present work we calculate these two parameters from conductivity data as a function of temperature below and above the glass transition temperature, T(g). The basic hypothesis assumes that ionic displacement(More)
We calculate, employing the classical theory of nucleation and growth, the effective diffusion coefficients controlling crystal nucleation of nanosize clusters and the subsequent growth of micron-size crystals at very deep undercoolings, below and above Tg, using experimental nucleation and growth data obtained for stoichiometric Li2O.2SiO2 and(More)
Conductivity data of the xAgI(1 - x)AgPO(3) system (0 ≤ x ≤ 0.5) were collected in the liquid and glassy states. The difference in the dependence of ionic conductivity on temperature below and above their glass transition temperatures (T(g)) is interpreted by a discontinuity in the charge carrier's mobility mechanisms. Charge carrier displacement occurs(More)
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic(More)
  • 1