Marcio L. Rodrigues

Learn More
Cryptococcus neoformans produces vesicles containing its major virulence factor, the capsular polysaccharide glucuronoxylomannan (GXM). These vesicles cross the cell wall to reach the extracellular space, where the polysaccharide is supposedly used for capsule growth or delivered into host tissues. In the present study, we characterized vesicle morphology(More)
Vesicular secretion of macromolecules has recently been described in the basidiomycete Cryptococcus neoformans, raising the question as to whether ascomycetes similarly utilize vesicles for transport. In the present study, we examine whether the clinically important ascomycete Histoplasma capsulatum produce vesicles and utilized these structures to secrete(More)
A major ceramide monohexoside (CMH) was purified from lipidic extracts of Cryptococcus neoformans. This molecule was analyzed by high-performance thin-layer chromatography (HPTLC), gas chromatography coupled with mass spectrometry, and fast atom bombardment-mass spectrometry. The cryptococcal CMH is a beta-glucosylceramide, with the carbohydrate residue(More)
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release.(More)
The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides,(More)
Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically(More)
A cell-wall-associated phosphatase in hyphae of Fonsecaea pedrosoi, a fungal pathogen causing chromoblastomycosis, was previously characterized by the authors. In the present work, the expression of an acidic ectophosphatase activity in F. pedrosoi conidial forms was investigated. The surface phosphatase activity in F. pedrosoi is associated with the cell(More)
The first work reporting synthesis of glucosylceramide (cerebrin, GlcCer) by yeasts was published in 1930. During approximately 70 years members of this class of glycosphingolipids (GSL) were considered merely structural components of plasma membrane in fungi. However, in the last decade GlcCer was reported to be involved with fungal growth,(More)
Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Treatment of the disease presents poor effectiveness and serious side effects. The disease is epidemiologically important in several regions, which has stimulated studies focused on the biology and pathogenic potential(More)
Pseudallescheria boydii is a fungal pathogen that causes disease in immunocompromised patients. Ceramide monohexosides (CMHs) were purified from lipidic extracts of this fungus, showing that, as described for several other species, P. boydii synthesizes glucosylceramides as major neutral glycosphingolipids. CMHs from P. boydii were analyzed by(More)