Marcin Witczak

Learn More
Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural networks become more and more popular in industrial applications of fault diagnosis. Taking into account(More)
In this paper, a Fault Tolerant Control (FTC) strategy for Linear Parameter Varying (LPV) systems that can be used in the case of actuator faults is proposed. The idea of this FTC method is to adapt the faulty plant instead of adapting the controller to the faulty plant. This approach can be seen as a kind of virtual actuator. An integrated FTC design(More)
— In this paper, the actuators and sensors fault detection and localization using a system model is considered. To obtain the system model, the neural network modeling is used. The artificial feedforward neural network with dynamic neurons in the state-space representation is proposed. To estimate the neural network parameters, the Adaptive Random Search(More)
The problem under consideration is to obtain a measurement schedule for training neural networks. This task is perceived as an experimental design in a given design space that is obtained in such a way as to minimize the difference between the neural network and the system being considered. This difference can be expressed in many different ways and one of(More)
This paper proposes a new passive robust fault detection scheme using non-linear models that include parameter uncertainty. The non-linear model considered here is described by a group method of data handling (GMDH) neural network. The problem of passive robust fault detection using models including parameter uncertainty has been mainly addressed by(More)