Marcin Kończykowski

Learn More
Inverse melting is the process in which a crystal reversibly transforms into a liquid or amorphous phase when its temperature is decreased. Such a process is considered to be very rare, and the search for it is often hampered by the formation of non-equilibrium states or intermediate phases. Here we report the discovery of first-order inverse melting of the(More)
Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity scattering. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac(More)
In superconductors with unconventional pairing mechanisms, the energy gap in the excitation spectrum often has nodes, which allow quasiparticle excitations at low energies. In many cases, such as in d-wave cuprate superconductors, the position and topology of nodes are imposed by the symmetry, and thus the presence of gapless excitations is protected(More)
Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics(More)
High energy electron irradiation is used to controllably introduce atomic-scale point defects into single crystalline Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2, and BaFe2(As1−xPx)2. The appearance of the collective pinning contribution to the critical current density in BaFe2(As1−xPx)2, and the magnitude of its enhancement in Ba(Fe1−xCox)2As2, conform with the(More)
Bitter decoration and magneto-optical studies reveal that in heavy-ion irradiated superconductors, a "porous" vortex matter is formed when vortices outnumber columnar defects. In this state ordered vortex crystallites are embedded in the "pores" of a rigid matrix of vortices pinned on columnar defects. The crystallites melt through a first-order transition(More)
We present the experimental observation of the fluctuation-dissipation theorem violation in an assembly of interacting magnetic nanoparticles in the low temperature superspin-glass phase. The magnetic noise is measured with a two-dimension electron gas Hall probe and compared to the out of phase ac susceptibility of the same ferrofluid. For "intermediate"(More)
The field-driven transition from an ordered Bragg glass to a disordered vortex phase in single-crystalline MgB2 is tuned by an increasing density of point defects, introduced by electron irradiation. The discontinuity observed in magnetization attests to the first-order nature of the transition. The temperature and defect density dependences of the(More)