Marcin Dryjanski

Learn More
Bigger, faster, higher? The appetite for broadband has clearly fueled the development of mobile cellular networks. On the other hand, the successful deployment of killer applications in the past 20 years has had a major impact on the markets as well: First and foremost, the need for untethered telephony and, with it, wireless real-time voice communication(More)
A proteinase was purified from resting seeds of Cucurbita ficifolia by ammonium sulfate fractionation and successive chromatography on CM-cellulose, Sephacryl S-300 and TSK DEAE-2SW (HPLC) columns. Inhibition by DFP and PMSF suggests that the enzyme is a serine proteinase. The apparent molecular mass of this enzyme is ca. 77 kDa. The optimum activity for(More)
5GNOW is a European collaborative research project questioning the design targets of LTE and LTE-Advanced, in particular the obedience to strict synchronism and orthogonality. By introducing new waveforms, the project fosters a re-design of physical and partially MAC layer to support heterogeneous traffic (high rate, sporadic access, carrier aggregation).(More)
Porcine pepsin hydrolyzes the Leu7-Met8 (P2'-P3') peptide bond in Cucurbita maxima trypsin inhibitor I (CMTI I) in the pH range 2.0-4.8. The reaction proceeds to equilibrium between intact CMTI I and its cleaved form. The pH-independent value of the equilibrium constant (Khyd0 = 0.78) indicates that both forms of the inhibitor have similar Gibbs energies.(More)
5GNOW (‘5th Generation Non-orthogonal Waveforms’, FP7 ICT Call 8 project supported by the European Commission) will question the design targets of LTE and LTE-Advanced and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to(More)
LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design(More)
The synthesis of a fluorescent beta-lactamase inhibitor, p-nitrophenyl [(dansylamido)methyl]-phosphonate is described. The compound inactivated the class C beta-lactamase of Enterobacter cloacae P99 with stoichiometric release of p-nitrophenol, presumably, as with other phosphonate inhibitors, by phosphonylation of the active site serine. The inhibited(More)
Previous research has shown that the class C beta-lactamase of Enterobacter cloacae P99 is able to catalyze the hydrolysis and aminolysis of acyclic depsipeptides. The steady kinetics of these reactions are complicated by the presence of an additional (depsi)peptide binding site in addition to the active site [Pazhanisamy, S., & Pratt, R. F. (1989)(More)
A new serine proteinase was isolated from Cucurbita ficifolia seeds by the purification procedure, which includes: extraction, salting out with ammonium sulphate, chromatography on CM-cellulose. Sephacryl S-300 gel filtration and h.p.l.c. on DEAE-2SW TSK column. The enzyme was homogeneous both in native and SDS PAGE. Three independent methods showed its(More)
This paper reports intermediate transceiver and frame structure concepts and corresponding results from the European FP7 research project 5GNOW. The core is the unified frame structure concept which supports an integrated 5G air interface, capable of dealing both with broadband data services and small packet services within the same band. It is essential(More)