Learn More
The parasitic protozoan Trypanosoma cruzi employs multiple molecular strategies to invade a broad range of nonphagocytic cells. Here we demonstrate that the invasion of human primary umbilical vein endothelial cells (HUVECs) or Chinese hamster ovary (CHO) cells overexpressing the B(2) type of bradykinin receptor (CHO-B(2)R) by tissue culture trypomastigotes(More)
Besides its insulin-mimetic effects, vanadate is also known to have a variety of physiological and pharmacological properties, varying from induction of cell growth to cell death and is also a modulator of the multidrug resistance phenotype. However, the mechanisms underlying these effects are still not understood. The present report analyzes the mechanisms(More)
Multidrug resistance (MDR) is the phenomenon in which cultured tumor cells, selected for resistance to one chemotherapeutic agent, simultaneously acquire resistance to several apparently unrelated drugs. The MDR phenotype is multifactorial. The best-studied mechanism involves the expression of a membrane protein that acts as an energy-dependent efflux pump,(More)
Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of(More)
The effects of the photodynamic action of methylene blue (MB-PDA) on strains of Escherichia coli were investigated to determine whether the dye could be used in photodynamic therapy (PDT). Using the method of alkaline sucrose gradient sedimentation, it was shown that in darkness MB induces a type of prelesion in DNA that transforms into single-strand breaks(More)
Photodynamic action has been advocated as an alternative treatment of tumors but the most common used dyes, hematoporphyrin derivatives, are substrate for P-glycoprotein. This study investigated the MDR-reverting properties of methylene blue (MB) and compared the sensitivity to its photodynamic action (PDA) in five cell lines that either express or do not(More)
The major drawback of cancer chemotherapy is the development of multidrug-resistant (MDR) tumor cells, which are cross-resistant to a broad range of structurally and functionally unrelated agents, making it difficult to treat these tumors. In the last decade, a number of authors have studied the effects of photodynamic therapy (PDT), a combination of(More)
The development of multidrug resistance (MDR) is the primary cause of failure of cancer chemotherapy and circumventing this problem is a major challenge in oncology. Vanadate is known to inhibit the ATPase activity of the P-glycoprotein and multidrug-resistant associated protein. In the present study we show that adherent MDR cells are more sensitive to(More)
The presence of both CFTR and ClC-2 proteins in the kidney suggest that they are involved in chloride transport along the nephron but their physiological roles in this organ are not known. To further understand the role of these chloride channels we studied Wistar rats subjected to dehydration for 2 days and also the homozygous Brattleboro rats, a strain of(More)
The results of this work show that the resistance of Escherichia coli cells to the photodynamic action of methylene blue is increased by the addition of glucose to the media in which they are grown. It is postulated that the increased resistance may be due to lowered retention of the dye by cells grown in the presence of glucose, leading to the diminution(More)