#### Filter Results:

#### Publication Year

2011

2016

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

This paper addresses the problem of jointly estimating the statistical distribution and segmenting multiple-tissue high-frequency ul-trasound images. The distribution of multiple-tissue images is mod-eled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is introduced into the… (More)

This paper addresses the problem of jointly estimating the statistical distribution and segmenting lesions in multiple-tissue high-frequency skin ultrasound images. The distribution of multiple-tissue images is modeled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled… (More)

—Modern signal processing (SP) methods rely very heavily on probability and statistics to solve challenging SP problems. SP methods are now expected to deal with ever more complex models, requiring ever more sophisticated computational inference techniques. This has driven the development of statistical SP methods based on stochastic simulation and… (More)

This paper addresses the problem of estimating the Potts parameter β jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on β requires computing the intractable normalizing constant of the Potts model. In the proposed… (More)

This paper addresses the problem of estimating the statistical distribution of multiple-tissue non-stationary ultrasound images of skin. The distribution of multiple-tissue images is modeled as a finite mixture of Heavy-Tailed Rayleigh distributions. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then derived to jointly… (More)