Learn More
This paper addresses the problem of estimating the statistical distribution of multiple-tissue non-stationary ultrasound images of skin. The distribution of multiple-tissue images is modeled as a finite mixture of Heavy-Tailed Rayleigh distributions. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then derived to jointly(More)
This paper addresses the problem of jointly estimating the statistical distribution and segmenting lesions in multiple-tissue high-frequency skin ultrasound images. The distribution of multiple-tissue images is modeled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled(More)
This paper addresses the problem of estimating the Potts parameter β jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on β requires computing the intractable normalizing constant of the Potts model. In the proposed(More)
—Modern signal processing (SP) methods rely very heavily on probability and statistics to solve challenging SP problems. Expectations and demands are constantly rising, and SP methods are now expected to deal with ever more complex models, requiring ever more sophisticated computational inference techniques. This has driven the development of statistical SP(More)
This paper addresses the problem of estimating the Potts parameter β jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on β requires computing the intractable normalizing constant of the Potts model. In(More)
This paper addresses the problem of estimating the Potts-Markov random field parameter β jointly with the unknown parameters of a Bayesian image segmentation model. We propose a new adaptive Markov chain Monte Carlo (MCMC) algorithm for performing joint maximum marginal likelihood estimation of β and maximum-a-posteriori unsupervised image(More)
This paper addresses the problem of jointly estimating the statistical distribution and segmenting multiple-tissue high-frequency ultrasound images. The distribution of multiple-tissue images is modeled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is introduced into the model(More)
—This letter considers the problem of computing the Cramer–Rao bound for the parameters of a Markov random field. Computation of the exact bound is not feasible for most fields of interest because their likelihoods are intractable and have intractable derivatives. We show here how it is possible to formulate the computation of the bound as a statistical(More)