Learn More
Characteristics and properties of the unfolding free energy change, delta G degrees N-U, as determined by the linear extrapolation method are assessed for the unfolding of phenylmethanesulfonyl chymotrypsin (PMS-Ct). Difference spectral measurements at 293 nm were used to define PMS-Ct unfolding brought about with guanidinium chloride, urea, and(More)
Guanidine hydrochloride (GdnHCl) and thermally induced unfolding measurements on the oxidized form of Escherichia coli thioredoxin at pH 7 were combined for the purpose of assessing the functional dependence of unfolding free energy changes on denaturant concentration over an extended GdnHCl concentration range. Conventional analysis of GdnHCl unfolding(More)
The linear extrapolation method was used to evaluate the unfolding free energy changes (delta G degrees N-U) for phenylmethanesulfonyl chymotrypsin (PMS-Ct) at pH 6.0. The nonlinear least-squares fits of difference spectral data using urea and guanidinium chloride as denaturants gave identical values for delta G degrees N-U and delta epsilon degrees U, the(More)
The enthalpy change (delta H) accompanying the alpha-helix to random coil transition in water has been determined calorimetrically for a 50-residue peptide of defined sequence that contains primarily alanine. The enthalpy of helix formation is one of the basic parameters needed to predict thermal unfolding curves for peptide helices and it provides a(More)
Organisms and cellular systems which have adapted to stresses such as high temperature, desiccation, and urea-concentrating environments have responded by concentrating particular organic solutes known as osmolytes. These osmolytes are believed to confer protection to enzyme and other macromolecular systems against such denaturing stresses. Differential(More)
Rhodopsin-containing retinal rod disk membranes from cattle have been examined by differential scanning calorimetry. Under conditions of 67 mM phosphate pH 7.0, unbleached rod outer segment disk membranes gave a single major endotherm with a temperature of denaturation (Tm) of 71.9 +/- 0.4 degrees C and a thermal unfolding calorimetric enthalpy change(More)
In membranous scallop sarcoplasmic reticulum, the alkali metal cations Na+ and K+ and nucleotide together promote dimer formation by the Ca(2+)-free Ca-ATPase and stabilize the enzyme activity [Kalabokis, V. N., Bozzola, J. J., Castellani, L., & Hardwicke, P. M. D. (1991) J. Biol. Chem. 266, 22044-22050]. The dependence of stabilization of the Ca(2+)-free(More)
  • 1