Learn More
This paper presents a novel whole-body analytical inverse kinematics (IK) method integrating collision avoidance and customizable body control for animating reaching tasks in real-time. Whole-body control is achieved with the interpolation of pre-designed key body postures, which are organized as a function of the direction to the goal to be reached. Arm(More)
Researchers demand much from their embodied conversational agents (ECAs), requiring them to be both lifelike , as well as responsive to events in an interactive setting. We find that a flexible combination of animation approaches may be needed to satisfy these needs. In this paper we present SmartBody, an open source modular framework for animating ECAs in(More)
This paper presents in detail how the techniques described in my previous work [Kallmann et al., 2003] can be used for efficiently computing collision-free paths in a triangulated planar environment. The method is based on a dynamic Constrained Delaunay Triangulation (CDT) where constraints are the obstacles in the planar environment. The main advantage of(More)
The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility after resistance has arisen have been unsuccessful, including restrictions on prescribing [1] and(More)
We evaluate the use of dynamic roadmaps for online motion planning in changing environments. When changes are detected in the workspace, the validity state of affected edges and nodes of a precompiled roadmap are updated accordingly. We concentrate in this paper on analyzing the tradeoffs between maintaining dynamic roadmaps and applying an on-line(More)
We describe the design of a modular system for untethered real-time kinematic motion capture using sensors with inertial measuring units (IMUs). Our system is comprised of a set of small and lightweight sensors. Each sensor provides its own global orientation (3 degrees of freedom) and is physically and computationally independent, requiring only external(More)
Editing recorded motions to make them suitable for different sets of environmental constraints is a general and difficult open problem. In this paper we solve a significant part of this problem by modifying full-body motions with an interactive randomized motion planner. Our method is able to synthesize collision-free motions for specified linkages of(More)