Marcelo J. Salierno

Learn More
We describe neurobiological applications of RuBi-Glutamate, a novel caged-glutamate compound based on ruthenium photochemistry. RuBi-Glutamate can be excited with visible wavelengths and releases glutamate after one- or two-photon excitation. It has high quantum efficiency and can be used at low concentrations, partly avoiding the blockade of GABAergic(More)
Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland(More)
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle(More)
We introduce a new caged glutamate, based in a ruthenium bipyridyl core, that undergoes heterolytic cleavage after irradiation with visible light with wavelengths up to 532nm, yielding free glutamate in less than 50ns. Glutamate photorelease occurs also efficiently following two-photon (2P) excitation at 800nm, and has a functional cross section of 0.14GM.
The synthesis and characterization of a series of ruthenium bis(bipyridine) complexes where the inorganic moiety acts as a photolabile protecting group is described. Complexes of the type [Ru(bpy)2L2]+ where bpy = 2,2'-bipyridine and L = butylamine, gamma-aminobutyric acid, tyramine, tryptamine, and serotonin were studied by nuclear magnetic resonance,(More)
We report the synthesis, characterization and applications of a ruthenium-bipyridine based caged nicotine. The complex [Ru(bpy)(2)(nic)(2)](2+) (where bpy = 2,2' bipyridine and nic = nicotine (3-[(2S)-1-methylpyrrolidin-2-yl] pyridine)) releases nicotine with a quantum yield ϕ = 0.23 upon irradiation with biologically harmless, blue (473 nm) or green (532(More)
The ability to trigger or turn “on” or “off” material properties with external stimuli in order to control biological responses is critically important to biotechnological and biomedical applications. One such application is the use of light to trigger cell adhesion to synthetic materials by controlling the presentation of the bioadhesive(More)
Cell detachment and migration from the endothelium occurs during vasculogenesis and also in pathological states. Here, we use a novel approach to trigger single cell release from an endothelial monolayer by in-situ opening of adhesive, fibril-like environment using light-responsive ligands and scanning lasers. Cell escapes from the monolayer were observed(More)
We have developed a system that allows focal drug application for cell culture microscopy. Single-cell drug delivery is achieved through the insertion of a patch-clamp-like micropipette in a microenvironment-controlled chamber mounted on a standard 35-mm Petri dish. The system has precise control of temperature, CO(2) concentration, and humidity, while(More)
BACKGROUND Retinotopic projection onto the tectum/colliculus constitutes the most studied model of topographic mapping and Eph receptors and their ligands, the ephrins, are the best characterized molecular system involved in this process. Ephrin-As, expressed in an increasing rostro-caudal gradient in the tectum/colliculus, repel temporal retinal ganglion(More)