Learn More
Tumorigenesis results from events that impinge on a variety of collaborating metabolic pathways. To assess their role in this process, we utilized a cell-based assay to perform a high-throughput, chemical library screen. In so doing, we identified F16, a small molecule that selectively inhibits proliferation of mammary epithelial, neu-overexpressing cells,(More)
The hepatitis C virus (HCV) has developed a small membrane protein, p7, which remarkably can self-assemble into a large channel complex that selectively conducts cations. We wanted to examine the structural solution that the viroporin adopts in order to achieve selective cation conduction, because p7 has no homology with any of the known prokaryotic or(More)
BACKGROUND CBFA is the DNA-binding subunit of the transcription factor complex called core binding factor, or CBF. Knockout of the Cbfa2 gene in mice leads to embryonic lethality and a profound block in hematopoietic development. Chromosomal disruptions of the human CBFA gene are associated with a large percentage of human leukemias. RESULTS Utilizing(More)
Mitochondrial uncoupling protein 2 (UCP2) is an integral membrane protein in the mitochondrial anion carrier protein family, the members of which facilitate the transport of small molecules across the mitochondrial inner membrane. When the mitochondrial respiratory complex pumps protons from the mitochondrial matrix to the intermembrane space, it builds up(More)
Modulation of cellular energy expenditure is fundamental to normal and pathological cell growth and differentiation. Mitochondria stores energy as a proton gradient across their inner membrane. Uncoupling proteins (UCPs) can dissipate the gradient to produce heat or regulate metabolite fluxes. UCP-mediated proton currents require fatty acids (FAs) and are(More)
High-throughput, data-directed computational protocols for <i>Structural Genomics</i> (or <i>Proteomics</i>) are required in order to evaluate the protein products of genes for structure and function at rates comparable to current gene-sequencing technology. This paper presents the JIGSAW algorithm, a novel high-throughput, automated approach to protein(More)
The HER-2 oncoprotein is commonly overexpressed in a variety of human malignancies and has become an attractive antitumor target. A number of strategies to inhibit the HER-2 receptor tyrosine kinase are currently the focus of intensive preclinical and clinical research. In the present study, we have engineered a bifunctional peptide, BHAP, which consists of(More)
The determination of the nuclear magnetic resonance (NMR) solution structure of fully reduced human glutaredoxin is described. A total of 1159 useful nuclear Overhauser effect (NOE) upper distance constraints and 187 dihedral angle constraints were obtained as the input for the structure calculations for which the torsion angle dynamics program DYANA has(More)
Malignant transformation is often a multistep process characterized by an initial period of avascular growth. Rapid cell proliferation creates areas within the emerging preneoplastic lesion with limited diffusion of oxygen and nutrients. In this context, activation of oncogenes, loss of tumor suppressors as well as additional adaptive mechanisms drive a(More)
The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved(More)