Marcelo I Davanço

Learn More
Sensitive transduction of the motion of a microscale cantilever is central to many applications in mass, force, magnetic resonance, and displacement sensing. Reducing cantilever size to nanoscale dimensions can improve the bandwidth and sensitivity of techniques like atomic force microscopy, but current optical transduction methods suffer when the(More)
Low-noise, tunable wavelength-conversion through nondegenerate four-wave mixing Bragg scattering in SiN(x) waveguides is experimentally demonstrated. Finite element method simulations of waveguide dispersion are used with the split-step Fourier method to predict device performance. Two 1550 nm wavelength band pulsed pumps are used to achieve tunable(More)
We demonstrate strong exciton-photon coupling of Frenkel excitons at room temperature in a microcavity composed of a melt grown thin film anthracene single crystal and two distributed Bragg reflectors. Angle-resolved reflectivity and normal incidence photoluminescence under weak excitation are observed. The microcavity spectrum is a function of the(More)
A technique based on using optical fiber taper waveguides for probing single emitters embedded in thin dielectric membranes is assessed through numerical simulations. For an appropriate membrane geometry, photoluminescence collection efficiencies in excess of 10% are predicted, exceeding the efficiency of standard free-space collection by an order of(More)
The propagation characteristics of a subwavelength plasmonic crystal are studied based on its complex Bloch band structure. Photonic crystal bands are generated with an alternative 2D Finite Element Method formulation in which the Bloch wave problem is reduced to a quadratic eigenvalue system for the Bloch wavevector amplitude k. This method constitutes an(More)
We demonstrate optomechanically mediated electromagnetically induced transparency and wavelength conversion in silicon nitride (Si3N4) microdisk resonators. Fabricated devices support whispering gallery optical modes with a quality factor (Q) of 10(6), and radial breathing mechanical modes with a Q=10(4) and a resonance frequency of 625 MHz, so that the(More)
Negative phase advance through a single layer of near-IR negative index metamaterial (NIM) is identified through interferometric measurements. The NIM unit cell, sub-wavelength in both the lateral and light propagation directions, is comprised of a pair of Au strips separated by two dielectric and one Au film. Numerical simulations show that the negative(More)
Hybrid quantum information devices that combine disparate physical systems interacting through photons offer the promise of combining low-loss telecommunications wavelength transmission with high fidelity visible wavelength storage and manipulation. The realization of such systems requires control over the waveform of single photons to achieve spectral and(More)
A general relation is derived between the band structure of an arbitrary low-loss unit cell and its effective index of refraction. In addition, we determine the maximum unit cell size that defines the "metamaterial regime" [D. R. Smith et al., Phys. Rev. E 71, 036617 (2005)]. Furthermore, these general rules allow for the design of a subwavelength(More)
We present a design methodology and analysis of a cavity optomechanical system in which a localized GHz frequency mechanical mode of a nanobeam resonator is evanescently coupled to a high quality factor (Q > 10(6)) optical mode of a separate nanobeam optical cavity. Using separate nanobeams provides flexibility, enabling the independent design and(More)