Learn More
Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance both memory and synaptic plasticity. The current model for the action of HDAC inhibitors assumes that they alter gene expression globally and thus affect memory processes in a nonspecific manner. Here, we show that the enhancement of hippocampus-dependent memory and hippocampal(More)
Gene transcription and long-term memory storage have been linked in experiments going back for more than 30 years, but the molecular mechanisms responsible for the regulation of gene expression during memory consolidation remain the subject of intense investigation. Much work has focused on the role of individual transcription factors, such as cAMP-response(More)
Aquaporin-4 (AQP4) is the major water channel in the CNS and is primarily expressed in astrocytes. Little is known about the potential for AQP4 to influence synaptic plasticity, although many studies have shown that it regulates the response of the CNS to injury. Therefore, we evaluated long-term potentiation (LTP) and long-term depression (LTD) in AQP4(More)
Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyltranserases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression(More)
One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately participate in the(More)
Fear conditioning is a frequently used paradigm for assessing learning and memory in rodents. Traditionally researchers have relied upon scoring of fear-related behavior by human observation, which can be difficult and subjective and thus vary among investigators. The goal of this study was to evaluate the ability of EthoVision tracking software (Noldus(More)
Deletions, translocations, or point mutations in the CREB-binding protein (CBP) gene have been associated with Rubinstein-Taybi Syndrome; a human developmental disorder characterized by retarded growth and reduced mental function. To examine the role of CBP in memory, transgenic mice were generated in which the CaMKII alpha promoter drives expression of an(More)
Several recent studies have shown that chromatin, the DNA-protein complex that packages genomic DNA, has an important function in learning and memory. Dynamic chromatin modification via histone deacetylase (HDAC) inhibitors and histone acetyltransferases may enhance hippocampal synaptic plasticity and hippocampus-dependent memory. Little is known about the(More)
To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo(More)
Classical fear conditioning requires the recognition of conditioned stimuli (CS) and the association of the CS with an aversive stimulus. We used Affymetrix oligonucleotide microarrays to characterize changes in gene expression compared to naive mice in both the amygdala and the hippocampus 30 min after classical fear conditioning and 30 min after exposure(More)