Learn More
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is probably caused by the cytotoxic effect of the amyloid beta-peptide (Abeta). We report here molecular changes induced by Abeta, both in neuronal cells in culture and in rats injected in the dorsal hippocampus with preformed Abeta fibrils, as an in vivo model of the disease.(More)
It is generally accepted that human Alzheimer's disease (AD) neuropathology markers are completely absent in rodent brains. We report here that an aged wild-type South American rodent, Octodon degu, expresses neuronal beta-amyloid precursor protein (beta-APP695) displaying both intracellular and extracellular deposits of amyloid-beta-peptide (Abeta),(More)
Current evidence supports the notion that beta-amyloid deposits or Abeta intermediates may be responsible for the pathogenesis in Alzheimer's disease (AD) patients. In the present work, we have assessed the neuroprotective effect of the chronic intraperitoneal administration of a five-amino-acid beta-sheet breaker peptide (iAbeta5p) on the rat behavioral(More)
Alzheimer's disease (AD) is a progressive dementia paralleled by selective neuronal death, which is probably caused by the cytotoxic effects of the amyloid-beta peptide (Abeta). We have observed that Abeta-dependent neurotoxicity induces a loss of function of Wnt signaling components and that activation of this signaling cascade prevent such cytotoxic(More)
Previous studies have demonstrated that acetylcholinesterase (AChE) promotes the assembly of amyloid-beta-peptides into neurotoxic amyloid fibrils and is toxic for chick retina neuronal cultures and neuroblastoma cells. Moreover, AChE is present in senile plaques in Alzheimer's disease (AD) brains. Here we have studied the effect of AChE on astrocytes and(More)
Proteins of the major histocompatibility complex class I (MHCI) are known for their role in the vertebrate adaptive immune response, and are required for normal postnatal brain development and plasticity. However, it remains unknown if MHCI proteins are present in the mammalian brain before birth. Here, we show that MHCI proteins are widely expressed in the(More)
Human prion protein fragments (PrP60-67 or PrP59-91) prevented and reversed the inhibition elicited by 5 micro m copper on the P2X4 receptor expressed in Xenopus laevis oocytes. A 60-s pre-application of 5 micro m copper caused a 69.2 +/- 2.6% inhibition of the 10 micro m adenosine triphosphate (ATP)-evoked currents, an effect that was prevented by mixing 5(More)
Human cellular prion protein (PrP(C)) is involved in several neurodegenerative disorders; however, its normal function is unknown. We report here that a synthetic peptide corresponding to the four-octarepeat sequence of the PrP(C) (PrP(59-91)) protects hippocampal neurons against copper neurotoxic effects in vivo. Using a rat bilateral intrahippocampal(More)
Neuropathological changes generated by human amyloid-beta peptide (Abeta) fibrils and Abeta-acetylcholinesterase (Abeta-AChE) complexes were compared in rat hippocampus in vivo. Results showed that Abeta-AChE complexes trigger a more dramatic response in situ than Abeta fibrils alone as characterized by the following features observed 8 weeks after(More)
Prion diseases are fatal neurodegenerative disorders associated with the conversion of the cellular prion protein (PrPC) into a pathologic isoform. Although the physiological function of PrPC remains unknown, evidence relates PrPC to copper metabolism and oxidative stress as suggested by its copper-binding properties in the N-terminal octapeptide repeat(More)