Simon J H Brookes15
Vladimir P Zagorodnyuk10
Bao Nan Chen6
Nick J Spencer6
15Simon J H Brookes
10Vladimir P Zagorodnyuk
6Bao Nan Chen
6Nick J Spencer
Learn More
BACKGROUND & AIMS Vagal afferent mechanoreceptors in the upper gut have recently been identified morphologically as intraganglionic laminar endings (IGLEs), but little is known about the structure of mechanoreceptive endings elsewhere in the gastrointestinal tract. We have morphologically characterized the nerve endings of specialized mechanoreceptors in(More)
The guinea pig rectum, but not the colon, is innervated by a specialized class of distension-sensitive mechanoreceptors that have transduction sites corresponding to rectal intraganglionic laminar endings (rIGLEs). Rectal mechanoreceptors recorded in vitro had low threshold to circumferential stretch, adapted slowly, and could respond within 2 ms to(More)
A number of transient receptor potential (TRP) channels has recently been shown to mediate cutaneous thermosensitivity. Sensitivity to warm and cool stimuli has been demonstrated in both human and animal gastrointestinal tract; however, the molecular mechanisms that underlie this have not been determined. Vagal afferent neurons with cell bodies in the(More)
Sensory neurons represent an attractive target for pharmacological treatment of various bladder disorders. However the properties of major classes of mechano-sensory neurons projecting to the bladder have not been systematically established. An in vitro bladder preparation was used to examine the effects of a range of mechanical stimuli (stretch, von Frey(More)
Vagal mechanoreceptors to the guinea-pig oesophagus, recorded extracellularly, in vitro, fired spontaneously at 3.3 +/- 0.2 Hz, (n = 75, from 57 animals), and had low thresholds to circumferential stretch. In this study, we have investigated whether mechanotransduction by intraganglionic laminar endings (IGLEs) directly relies on mechano-gated ion channels,(More)
Excitatory and inhibitory enteric neural input to intestinal muscle acting on ongoing myogenic activity determines the rich repertoire of motor patterns involved in digestive function. The enteric neural activity cannot yet be established during movement of intact intestine in vivo or in vitro. We propose the hypothesis that is possible to deduce(More)
A novel in vitro bladder preparation was used to examine effect of various stimuli (stretch, von Frey hair compression, stroking of receptive fields, applications of chemical stimuli to the mucosa) on electrophysiological recordings from guinea pig bladder afferents in vitro. Several functionally distinct classes of bladder sensory neurons were(More)
Propulsive contractions of circular muscle are largely responsible for the movements of content along the digestive tract. Mechanical and electrophysiological recordings of isolated colonic circular muscle have demonstrated that localized distension activates ascending and descending interneuronal pathways, evoking contraction orally and relaxation anally.(More)
Contractions and relaxations of the muscle layers within the digestive tract alter the external diameter and the internal pressures. These changes in diameter and pressure move digesting food and waste products. Defining these complex relationships is a fundamental step for neurogastroenterologists to be able define normal and abnormal gut motility.(More)
Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has(More)