Marcella Iannuzzi

Learn More
The possibility of observing chemical reactions in ab initio molecular dynamics runs is severely hindered by the short simulation time accessible. We propose a new method for accelerating the reaction process, based on the ideas of the extended Lagrangian and coarse-grained non-Markovian metadynamics. We demonstrate that by this method it is possible to(More)
Oxidative damage of DNA via radical cation formation is a common cause of mutagenesis, cancer and of the physiological changes associated with aging. By using state-of-the-art ab initio molecular dynamics simulations, we study the mechanism that guides the first steps of this process. In the mechanism proposed here, guanine, which among the bases has the(More)
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally(More)
The reaction mechanism for acetic acid dissociation in aqueous solution has been investigated by combining the metadynamics method with transition path sampling (TPS). By using collective variables that describe not only the deprotonation of the acid but also the solvation state of the hydronium ion and its distance from the acetate, a reactive trajectory(More)
Full potential x-ray spectroscopy simulations of hexagonal ice and liquid water are performed by means of the newly implemented methodology based on the Gaussian augmented plane waves formalism. The computed spectra obtained within the supercell approach are compared to experimental data. The variations of the spectral distribution determined by the quality(More)
Ultrathin films of boron nitride (BN) have recently attracted considerable interest given their successful incorporation in graphene nanodevices and their use as spacer layers to electronically decouple and order functional adsorbates. Here, we introduce a BN monolayer grown by chemical vapor deposition of borazine on a single crystal Cu support,(More)
Single atoms, and in particular the least reactive noble gases, are difficult to immobilize at room temperature. Ion implantation into a crystal lattice has this capability, but the randomness of the involved processes does not permit much control over their distribution within the solid. Here we demonstrate that the boron nitride nanomesh, a corrugated(More)
Hexagonal boron nitride (h-BN) adsorbed on metal surfaces shows great promise for applications in nanoscience. Depending on the nature of the substrate, effects such as an extended corrugation of the monolayer can be observed and utilized, e.g. for the patterning of adsorbed molecules. Here we present an in-depth computational study of the structural and(More)
The wetting of water on corrugated and flat hexagonal boron nitride (h-BN) monolayers on Rh(111) is studied within a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. Water is treated by QM methods, whereas the interactions between liquid and substrate are described at the MM level. The electrostatic properties of the substrate are reproduced(More)
The adsorption of naphthalene and quinoline on Pt(111), Pd(111) and Rh(111) surfaces is studied using density functional theory. The metal surfaces are simulated by means of large confined clusters and for Pt by means of a slab with periodic boundary conditions (PBC). Calculation parameters such as basis set convergence, basis set superposition error and(More)