Learn More
Although antibiotic resistance represents a public health emergency, the pipeline of new antibiotics is running dry. Repurposing of old drugs for new clinical applications is an attractive strategy for drug development. We used the bacterial pathogen Pseudomonas aeruginosa as a target for the screening of antivirulence activity among marketed drugs. We(More)
Mutations in the sulfate transporter gene, SCL26A2, lead to cartilage proteoglycan undersulfation resulting in chondrodysplasia in humans; the phenotype is mirrored in the diastrophic dysplasia (dtd) mouse. It remains unclear whether bone shortening and deformities are caused solely by changes in the cartilage matrix, or whether chondroitin sulfate(More)
Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is(More)
BACKGROUND Sphingolipids take part in immune response and can initiate and/or sustain inflammation. Various inflammatory diseases have been associated with increased ceramide content, and pharmacological reduction of ceramide diminishes inflammation damage in vivo. Inflammation and susceptibility to microbial infection are two elements in a vicious circle.(More)
A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection(More)
A series of novel S-DABO analogues, characterized by different substitution patterns at positions 2, 5, and 6 of the heterocyclic ring, were synthesized in a straightforward fashion by means of parallel synthesis and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Most of the compounds proved to be highly active on the wild-type(More)
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and(More)
Pseudomonas aeruginosa infections of the airway cells decrease apical expression of both wild-type (wt) and F508del CFTR through the inhibition of apical endocytic recycling. CFTR endocytic recycling is known to be regulated by its interaction with PDZ domain containing proteins. Recent work has shown that the PDZ domain scaffolding protein NHERF1 finely(More)
Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are distinguished from the initially acquired strain. However, the genetic basis and the biology of host-bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not(More)
We investigated some pyrrolobenzoxazepinone (PBOs, 3e-i) analogues of early described effective non-nucleoside inhibitors of HIV-1 reverse transcriptase (RT). Enzymological studies of 3e-i enantiomers, with wild type (wt) RT and some drug-resistant mutants, revealed a stereoselective mode of action and selectivity for RT ternary complex. Unexpectedly (+)-3g(More)