Marcel Robischon

Learn More
The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor,(More)
Secondary growth results in the radial expansion of woody stems, and requires the coordination of tissue patterning, cell differentiation, and the maintenance of meristematic stem cells within the vascular cambium. Advances are being made towards describing molecular mechanisms that regulate these developmental processes, thanks in part to the application(More)
The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues(More)
  • 1