Learn More
OMI instrument is an ultraviolet-visible imaging spectrograph that uses two-dimensional charge-coupled device detectors to register both the spectrum and the swath perpendicular to the flight direction with a 115 wide swath, which enables global daily ground coverage with high spatial resolution. This paper presents the OMI design and discusses the main(More)
A method and an experimental measurement setup to accurately characterize the instrument transfer function in the spectral domain for hyperspectral spectrometers in the ultraviolet-visible wavelength range are described. The application to the on-ground calibration of the Ozone Monitoring Instrument (OMI) on board the Earth Observing System Aura satellite(More)
[1] The validation of the collection 2 level 1b radiance and irradiance data measured with the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura satellite is investigated and described. A number of improvements from collection 2 data to collection 3 data are identified and presented. It is shown that with these improvements in(More)
High-accuracy spectral-slit-function calibration measurements, in situ ambient absorption gas cell measurements for ozone and nitrogen dioxide, and ground-based zenith sky measurements with the Earth Observing System Aura Ozone Monitoring Instrument (OMI) flight instrument are reported and the results discussed. For use of high-spectral-resolution gas(More)
The in-flight wavelength calibration for the Ozone Monitoring Instrument is discussed. The observed variability in the wavelength scale is two orders of magnitude larger than caused by temperature changes in the instrument. These wavelength variations are the result of rapid changes in time in the radiance levels during an individual observation in the(More)
The Ozone Monitoring Instrument (OMI) was launched on 15 July 2004 on NASA's EOS AURA satellite. The OMI instrument is an ultraviolet-visible imaging spectrograph that uses two-dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction with a 115 degrees wide swath, which enables global daily ground coverage(More)
The Global Ozone Monitoring Experiment (GOME) is a new instrument, which was launched aboard the second European Remoting Sensing satellite ESA-ERS2 in 1995. For its long-term radiometric and spectral calibration the GOME observes the sun and less frequently the moon on a regular basis. These measurements of the lunar radiance and solar irradiance have been(More)