#### Filter Results:

#### Publication Year

2001

2011

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Gerald Baumgartner, Alexander Auer, David E. Bernholdt, Alina Bibireata, Venkatesh Choppella, Daniel Cociorva +12 others
- 2005

This paper provides an overview of a program synthesis system for a class of quantum chemistry computations. These computations are expressible as a set of tensor contractions and arise in electronic structure modeling. The input to the system is a a high-level specification of the computation, from which the system can synthesize high-performance parallel… (More)

This paper discusses a program synthesis system to facilitate the generation of high-performance parallel programs for a class of computations encountered in quantum chemistry and physics. These computations are expressible as a set of tensor contractions and arise in electronic structure modeling. An overview is provided of the synthesis system under… (More)

- Daniel Cociorva, Gerald Baumgartner, Chi-Chung Lam, P. Sadayappan, J. Ramanujam, Marcel Nooijen +2 others
- PLDI
- 2002

The accurate modeling of the electronic structure of atoms and molecules is very computationally intensive. Many models of electronic structure, such as the Coupled Cluster approach, involve collections of tensor contractions. There are usually a large number of alternative ways of implementing the tensor contractions, representing different trade-offs… (More)

- Gerald Baumgartner, David E. Bernholdt, Daniel Cociorva, Robert J. Harrison, So Hirata, Chi-Chung Lam +4 others
- SC
- 2002

This paper discusses an approach to the synthesis of high-performance parallel programs for a class of computations encountered in quantum chemistry and physics. These computations are expressible as a set of tensor contractions and arise in electronic structure modeling. An overview is provided of the synthesis system, that transforms a high-level… (More)

- Daniel Cociorva, J. W. Wilkins, Gerald Baumgartner, P. Sadayappan, J. Ramanujam, Marcel Nooijen +2 others
- HiPC
- 2001

The goal of our project is the development of a program synthesis system to facilitate the development of high-performance parallel programs for a class of computations encountered in computational chemistry and computational physics. These computations are expressible as a set of tensor contractions and arise in electronic structure calculations. This… (More)

As both electronic structure methods and the computers on which they are run become increasingly complex, the task of producing robust, reliable, high-performance implementations of methods at a rapid pace becomes increasingly daunting. In this paper we present an overview of the Tensor Contraction Engine (TCE), a unique effort to address issues of both… (More)

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the Coupled Cluster method. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions, but the… (More)

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to… (More)

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. Operation… (More)

- Albert Hartono, Richard A. Lethin, Gary M. Selzer, Qingda Lu, Thomas Henretty, Sriram Krishnamoorthy +15 others
- 2011

Research Interests Compile-time and run-time optimizations for High Performance Computing (HPC); Loop transformations for parallelism and data locality; Automation of performance optimizations and empirical tuning of parallel applications.