Marcel Mudrich

Learn More
Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes(More)
We have measured the dependence of the relative integral cross section of the reaction Li + HF → LiF + H on the collision energy (excitation function) using crossed molecular beams. By varying the intersection angle of the beams from 37° to 90° we covered the energy range 25 meV ≤ E(tr) ≤ 131 meV. We observe a monotonous rise of the excitation function with(More)
The dynamics of vibrational wave packets excited in K2 dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump-probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K 2 -formation are identified. While the wave packet dynamics of(More)
The dynamics of small molecules and their charged photofragments inside helium (He) nanodroplets following photoexcitation into dissociative states and ionization is a field of particular interest (see e.g. [1] and references therein). These studies aim at facilitating the understanding of charge transfer reactions inside He nanodroplets which are likely to(More)
The real-time dynamics of excited alkali metal atoms (Rb) attached to quantum fluid He nanodroplets is investigated using femtosecond imaging spectroscopy and time-dependent density functional theory. We disentangle the competing dynamics of desorption of excited Rb atoms off the He droplet surface and solvation inside the droplet interior as the Rb atom is(More)
The dynamics of vibrational wave packets excited in Na2 dimers in the triplet ground and excited states is investigated by means of helium nanodroplet isolation (HENDI) combined with femtosecond pump-probe spectroscopy. Different pathways in the employed resonant multiphoton ionization scheme are identified. Within the precision of the method, the wave(More)
The vibrational wave-packet dynamics of diatomic rubidium molecules (Rb2) in triplet states formed on the surface of superfluid helium nanodroplets is investigated both experimentally and theoretically. Detailed comparison of experimental femtosecond pump-probe spectra with dissipative quantum dynamics simulations reveals that vibrational relaxation is the(More)
Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500-74 500 cm(-1) covering the bands of high-lying gerade Rydberg states [(2)Π1/2]c6d;0g (+) and [(2)Π1/2]c6d;2g has been applied. The ion signal was dominated by the atomic fragment ion I(+). Up to 5 dissociation channels yielding(More)
Phase-modulated wave packet interferometry is combined with mass-resolved photoion detection to investigate rubidium atoms attached to helium nanodroplets in a molecular beam experiment. The spectra of atomic Rb electronic states show a vastly enhanced sensitivity and spectral resolution when compared to conventional pump-probe wave packet interferometry.(More)
Homo- and heteronuclear alkali quartet trimers of type K(3-n)Rb(n) (n = 0,1,2,3) formed on helium nanodroplets are probed by one-color femtosecond (fs) photoionization (PI) spectroscopy. The obtained frequencies are assigned to vibrations in different electronic states in comparison to high level ab initio calculations of the involved potentials including(More)
  • 1