Marcel Lombaerts

Learn More
The RAD23 gene of Saccharomyces cerevisiae is involved in nucleotide excision repair (NER) and mutations in this gene confer a moderate sensitivity to UV irradiation. However, no repair of either cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts, the major types of lesions formed upon UV irradiation, was detectable during the first 4 h post UV(More)
Promoter hypermethylation is known to result in transcriptional downregulation of many genes including the CDH1 gene. In this study we set out to determine CDH1 promoter methylation in breast tumors with decreased or absent E-cadherin protein expression and without CDH1 gene mutations by methylation-specific PCR (MSP). Interestingly, some tumor samples with(More)
The molecular determinants of carcinogenesis, tumor progression and patient prognosis can be deduced from simultaneous comparison of thousands of genes by microarray analysis. However, the presence of stroma cells in surgically excised carcinoma tissues might obscure the tumor cell-specific gene expression profiles of these samples. To circumvent this(More)
Loss of heterozygosity (LOH) at chromosome arm 16q is frequently observed in human breast cancer, suggesting that one or more target tumor suppressor genes (TSGs) are located there. However, detailed mapping of the smallest region of LOH has not yet resulted in the identification of a TSG at 16q. Therefore, the present study attempted to identify TSGs using(More)
The recently cloned Saccharomyces cerevisiae MMS19 gene appears to be involved in both nucleotide excision repair (NER) and transcription, which is also the case for components of the NER/transcription complex TFIIH. Unlike TFIIH however, the Mms19 protein does not affect NER in a highly purified in vitro system. In order to investigate the role of Mms19 in(More)
The amount of gene flow among local populations partly determines the relative importance of genetic drift and natural selection in the differentiation of such populations. Land snails, because of their limited powers for dispersal, may be particularly likely to show such differentiation. In this study, we directly estimate gene flow in Albinaria corrugata,(More)
The RAD52 gene of Saccharomyces cerevisiae is essential for repair of DNA double-strand breaks (DSBs) by homologous recombination. Inactivation of this gene confers hypersensitivity to DSB-inducing agents and defects in most forms of recombination. The rad22+ gene in Schizosaccharomyces pombe (here referred to as rad22A+) has been characterized as a homolog(More)
The global genome repair (GGR) subpathway of nucleotide excision repair (NER) is capable of removing lesions throughout the genome. In Saccharomyces cerevisiae the RAD7 and RAD16 genes are essential for GGR. Here we identify rhp7 (+), the RAD7 homolog in Schizosaccharomyces pombe. Surprisingly, rhp7 (+)and the previously cloned rhp16 (+)are located very(More)
In Schizosaccharomyces pombe two different repair mechanisms remove UV-induced lesions from DNA, i.e. nucleotide excision repair (NER) and UV damage repair (UVDR). Here, the kinetics of removal of cyclobutane pyrimidine dimers (CPDs) by both pathways is determined at base resolution in the transcribed strand (TS) and the non-transcribed strand (NTS) of the(More)
Chromosome arm 16q is the second most frequent target of loss of heterozygosity in breast cancer and is, therefore, a candidate to contain one or more classic tumour suppressor genes (TSGs). E-cadherin at 16q22 was identified as a TSG in lobular breast cancer, but TSGs in ductal breast cancer remain elusive. Several genes have been suggested as potential(More)