Learn More
Agrobacterium tumefaciens transfers part of its Ti plasmid, the T-DNA, to plant cells during tumorigenesis. It is routinely used for the genetic modification of a wide range of plant species. We report that A. tumefaciens can also transfer its T-DNA efficiently to the filamentous fungus Aspergillus awamori, demonstrating DNA transfer between a prokaryote(More)
Structure activity relationships (SAR), three-dimensional structure activity relationships (3D-QSAR), and pharmacophores represent useful tools in understanding cytochrome P450 (CYP) active sites in the absence of crystal structures for these human enzymes. These approaches have developed over the last 30 years such that they are now being applied in(More)
We determined whether T-DNA molecules introduced into plant cells using Agrobacterium are suitable substrates for homologous recombination. For the detection of such recombination events different mutant versions of a NPTII construct were used. In a first set of experiments protoplasts of Nicotiana tabacum SR1 were cocultivated with two Agrobacterium(More)
The Aspergillus niger D-xylulose kinase encoding gene has been cloned by complementation of a strain deficient in D-xylulose kinase activity. Expression of xkiA was observed in the presence of L-arabinose, L-arabitol and D-xylose. Expression of xkiA is not mediated by XLNR, the xylose-dependent positively-acting xylanolytic regulator. Although the(More)
Understanding the binding of ligands in the active site of a membrane-bound protein is difficult in the absence of a crystal structure. When these proteins are the enzymes involved in drug metabolism, it leaves little option but to use site-directed mutagenesis and in vitro studies to provide critical information relating to determinants of binding(More)
Agrobacterium-mediated transformation of plants is known to result in transgenic plants with a variable number of integrated T-DNA copies. Our aim was to obtain transgenic tobacco plants containing one integrated T-DNA copy per genome. Therefore, a quick method was developed to estimate the T-DNA copy number of young transgenic plantlets within 10 weeks(More)
Voltage-gated sodium channels are key to the initiation and propagation of action potentials in electrically excitable cells. Molecular characterization has shown there to be nine functional members of the family, with a high degree of sequence homology between the channels. This homology translates into similar biophysical and pharmacological properties.(More)
A combined protein and pharmacophore model for cytochrome P450 2C9 (CYP2C9) has been derived using various computational chemistry techniques. A combination of pharmacophore modeling (using 31 metabolic pathways for 27 substrates), protein modeling (using the rabbit CYP2C5/3 crystal structure), and molecular orbital calculations was used to derive a model(More)
Block of human ether-a-go-go related gene (HERG) K(+) channels by a variety of medications has been linked to acquired long QT syndrome, a disorder of cardiac repolarization that predisposes to lethal arrhythmias. The drug-binding site is composed of residues that face into the central cavity of the channel. Two aromatic residues located on the S6 domain(More)