Learn More
Iron oxide nanoparticles (NPs) are frequently employed in biomedical research as magnetic resonance (MR) contrast agents where high intracellular levels are required to clearly depict signal alterations. To date, the toxicity and applicability of these particles have not been completely unraveled. Here, we show that endosomal localization of different iron(More)
The adsorption of different types of phosphatidylglycerols onto magnetizable solid particles is studied. The super-paramagnetic magnetite spheres used have an average diameter of only 14 nm and are stabilized by lauric acid to keep them in solution. During incubation and dialysis of this water-based magnetic fluid in the presence of preformed sonicated(More)
This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)-biotin surface groups (SPIO-PEG-biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes(More)
The in vitro labelling of cultured cells with iron oxide nanoparticles (NPs) is a frequent practice in biomedical research. To date, the potential cytotoxicity of these particles remains an issue of debate. In the present study, 4 different NP types (dextran-coated Endorem, carboxydextran-coated Resovist, lipid-coated magnetoliposomes (MLs) and(More)
Iron oxide nanoparticle internalization exerts detrimental effects on cell physiology for a variety of particles, but little is known about the mechanism involved. The effects of high intracellular levels of four types of iron oxide particles (Resovist, Endorem, very small organic particles, and magnetoliposomes (MLs)) on the viability and physiology of(More)
We evaluated the relaxation enhancement and biodistribution of short- vs. long-circulating magnetoliposomes as a new contrast agent for magnetic resonance (MR) imaging of bone marrow. Magnetoliposomes with (ML-PEG) and without (ML) incorporation of polyethylene glycol (PEG, Mw 2000) were prepared, measuring 40 nm in diameter with 1-6 iron oxide(More)
The in vitro labeling of stem or therapeutic cells with engineered nanoparticles with the aim of transplanting these cells into live animals and, for example, noninvasively monitoring their migration, is a hot topic in nanomedicine research. It is of crucial importance that cell-nanoparticle interactions are studied in depth in order to exclude any negative(More)
The need to track and evaluate the fate of transplanted cells is an important issue in regenerative medicine. In order to accomplish this, pre-labelling cells with magnetic resonance imaging (MRI) contrast agents is a well-established method. Uptake of MRI contrast agents by non-phagocytic stem cells, and factors such as cell homeostasis or the adverse(More)
The high biocompatibility and versatile nature of liposomes made these particles keystone components in many hot-topic research areas. For transfection and cell labelling purposes, synthetic cationic lipids are often added, but in most studies, little attention has been paid to their cytotoxic effects. In the present work, cationic magnetoliposomes (MLs),(More)