Marcel Breeuwer

Learn More
We have developed a method for automatic contour propagation in cine cardiac magnetic resonance images. The method consists of a new active contour model that tries to maintain a constant contour environment by matching gray values in profiles perpendicular to the contour. Consequently, the contours should maintain a constant position with respect to(More)
Upon microinjection into the cytoplasm, three small nonnuclear (extracellular or mitochondrial) proteins diffused into nuclei of chilled or energy-depleted cells. In contrast, the facilitated transport of two large nuclear localization signal (NLS)-containing proteins was reversibly arrested by chilling or energy depletion. Surprisingly, the transport of(More)
RATIONALE AND OBJECTIVES Cardiovascular disease is the number one cause of premature death in the western world. Analysis of cardiac function provides clinically useful diagnostic and prognostic information; however, manual analysis of function via delineation is prohibitively time consuming. This article describes a technique for analysis of dynamic(More)
We propose a novel automatic method to segment the myocardium on late-enhancement cardiac MR (LE CMR) images with a multi-step approach. First, in each slice of the LE CMR volume, a geometrical template is deformed so that its borders fit the myocardial contours. The second step consists in introducing a shape prior of the left ventricle. To do so, we use(More)
Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T(More)
We present novel, comprehensive visualization techniques for the diagnosis of patients with coronary artery disease using segmented cardiac MRI data. We extent an accepted medical visualization technique called the bull's eye plot by removing discontinuities, preserving the volumetric nature of the left ventricular wall and adding anatomical context. The(More)
Patient-specific wall stress simulations on abdominal aortic aneurysms may provide a better criterion for surgical intervention than the currently used maximum transverse diameter. In these simulations, it is common practice to compute the peak wall stress by applying the full systolic pressure directly on the aneurysm geometry as it appears in medical(More)