Marcel Arheit

Learn More
Dynamo is a new software package for subtomogram averaging of cryo Electron Tomography (cryo-ET) data with three main goals: first, Dynamo allows user-transparent adaptation to a variety of high-performance computing platforms such as GPUs or CPU clusters. Second, Dynamo implements user-friendliness through GUI interfaces and scripting resources. Third,(More)
Electron crystallography of 2D protein crystals can determine the structure of membrane embedded proteins at high resolution. Images or electron diffraction patterns are recorded with the electron microscope of the frozen hydrated samples, and the 3D structure of the proteins is then determined by computer data processing. Here we introduce the(More)
Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated(More)
The introduction of direct electron detectors (DED) to cryo-electron microscopy has tremendously increased the signal-to-noise ratio (SNR) and quality of the recorded images. We discuss the optimal use of DEDs for cryo-electron crystallography, introduce a new automatic image processing pipeline, and demonstrate the vast improvement in the resolution(More)
Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to image frozen-hydrated 2D crystals. The processing of recorded images exploits the periodic arrangement of the structures in the images to extract the amplitudes and phases of diffraction spots in Fourier space. However, image imperfections require a crystal unbending(More)
The secondary Na+/citrate symporter CitS of Klebsiella pneumoniae is the best-characterized member of the 2-hydroxycarboxylate transporter family. The recent projection structure gave insight into its overall structural organization. Here, we present the three-dimensional map of dimeric CitS obtained with electron crystallography. Each monomer has 13(More)
In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image(More)
Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to record images and diffraction patterns of frozen-hydrated 2D crystals. Each two-dimensional (2D) crystal is only imaged once, at one specific tilt angle, and the recorded images can be automatically processed with the 2dx/MRC software package. Processed image data(More)
Electron crystallography of membrane proteins records images and diffraction patterns of frozen-hydrated two-dimensional (2D) crystals. To reconstruct the high-resolution three-dimensional (3D) structure of a membrane protein, a multitude of images of 2D crystals have to be processed. Certain processing steps are thereby similar for batches of images that(More)
  • 1