Marc Vila Cuenca

Learn More
Peritoneal dialysis (PD) can result in chronic inflammation and progressive peritoneal membrane damage. Alanyl-Glutamine (Ala-Gln), a dipeptide with immunomodulatory effects, improved resistance of mesothelial cells to PD fluids. Recently, interleukin-17 (IL-17) was found to be associated with PD-induced peritoneal damage. Here we studied the capacity of(More)
Different animal models for peritoneal dialysis (PD) have been used in the past decades to develop PD fluids compatible with patient life and to identify markers of peritoneal fibrosis and inflammation. Only few of those studies have taken into account the importance of uraemia-induced alterations at both systemic and peritoneal levels. Moreover, some(More)
Peritoneal dialysis (PD) is associated with structural and functional alterations of the peritoneal membrane, consisting of fibrosis, angiogenesis, and loss of ultrafiltration capacity. Vitamin D receptor activation (VDRA) plays an important role in mineral metabolism and inflammation, but also antiangiogenic and antifibrotic properties have been reported.(More)
Vitamin D deficiency is associated with a range of clinical disorders. To study the mechanisms involved and improve treatments, animal models are tremendously useful. Current vitamin D deficient rat models have important practical limitations, including time requirements when using, exclusively, a vitamin D deficient diet. More importantly, induction of(More)
  • 1