Learn More
We have examined the immunoreactivity of acetylcholinesterase from different vertebrate species with a rabbit antiserum raised against the purified rat brain hydrophobic enzyme (G4 form). We found no significant interaction with enzymes from Electrophorus, Torpedo, chicken, and rabbit. The antiserum reacted with acetylcholinesterases from the brains of the(More)
The effect of several basement membrane components on the aggregation of acetylcholine (ACh) receptors on cultured myotubes was studied. Cultures were incubated for 16 to 24 hr with laminin, a heparan sulfate proteoglycan, collagen types IV and V, or fibronectin, alone, or together with medium conditioned by NG108-15 neuroblastoma X glioma hybrid cells(More)
The relative amount and distribution of acetylcholinesterase (AChE) molecular forms were studied in slow soleus and (less extensively) in fast extensor digitorum longus (EDL) muscles of the rat before and after denervation and direct stimulation. Normal EDL muscles showed higher total and specific AChE activity than normal soleus muscles and contained(More)
Studies were carried out on the polymorphism of acetylcholinesterase (AChE, EC 3.1.1.7) in a neuroblastoma x sympathetic ganglion cell hybrid cell line (T28) and its parental clone (N18TG2). These cells contain the tetrameric (G4, 10S), dimeric (G2, 6.5S) and monomeric (G1, 4S) forms of AchE, but not the collagen-tailed A12(16S) form of the sympathetic(More)
We analyzed the activity of acetylcholinesterase (AChE) and its molecular forms in the tissues of normal and dystrophic (mdx) mice, at different developmental stages. We studied the brain, the heart and the serum, in addition to four predominantly fast-twitch muscles (tibialis, plantaris, gastrocnemius and extensor digitorum longus (EDL)) and the(More)
Spinal cord neurons cultured in vitro have been shown to respond to changes in their environment by means of 2 different types of neurite outgrowth: (1) neurite elongation and (2) emergence and branching of newly formed neurites. Culture of spinal cord neurons with heparan sulfate proteoglycan (HSPG) medium resulted in a 3-fold increase in neurite(More)