Marc Tessier-Lavigne

Learn More
Extending axons in the developing nervous system are guided in part by repulsive cues. Genetic analysis in Drosophila, reported in a companion to this paper, identifies the Slit protein as a candidate ligand for the repulsive guidance receptor Roundabout (Robo). Here we describe the characterization of three mammalian Slit homologs and show that the(More)
In vertebrates, commissural axons pioneer a circumferential pathway to the floor plate at the ventral midline of the embryonic spinal cord. Floor plate cells secrete a diffusible factor that promotes the outgrowth of commissural axons in vitro. We have purified from embryonic chick brain two proteins, netrin-1 and netrin-2, that each possess commissural(More)
The guidance of axons to their targets in the developing nervous system is believed to involve diffusible chemotropic factors secreted by target cells. Floor plate cells at the ventral midline of the spinal cord secrete a diffusible factor or factors that promotes the outgrowth of spinal commissural axons and attracts these axons in vitro. Two(More)
During nervous system development, spinal commissural axons project toward floor plate cells and trochlear motor axons extend away from these cells. Netrin-1, a diffusible protein made by floor plate cells, can attract spinal commissural axons and repel trochlear axons in vitro, but its role in vivo is unknown. Netrin-1 deficient mice exhibit defects in(More)
The robo gene in Drosophila was identified in a large-scale mutant screen for genes that control the decision by axons to cross the CNS midline. In robo mutants, too many axons cross and recross the midline. Here we show that robo encodes an axon guidance receptor that defines a novel subfamily of immunoglobulin superfamily proteins that is highly conserved(More)
Neuronal growth cones navigate over long distances along specific pathways to find their correct targets. The mechanisms and molecules that direct this pathfinding are the topics of this review. Growth cones appear to be guided by at least four different mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion. Evidence is(More)
Nerve growth is regulated by attractive and repulsive factors in the nervous system. Microscopic gradients of Collapsin-1/Semaphorin III/D (Sema III) and myelin-associated glycoprotein trigger repulsive turning responses by growth cones of cultured Xenopus spinal neurons; the repulsion can be converted to attraction by pharmacological activation of the(More)
The guidance of developing axons in the nervous system is mediated partly by diffusible chemoattractants secreted by axonal target cells. Netrins are chemoattractants for commissural axons in the vertebrate spinal cord, but the mechanisms through which they produce their effects are unknown. We show that Deleted in Colorectal Cancer (DCC), a transmembrane(More)
Semaphorins are a large family of secreted and transmembrane proteins, several of which are implicated in repulsive axon guidance. Neuropilin (neuropilin-1) was recently identified as a receptor for Collapsin-1/Semaphorin III/D (Sema III). We report the identification of a related protein, neuropilin-2, whose mRNA is expressed by developing neurons in a(More)
Naturally occurring axonal pruning and neuronal cell death help to sculpt neuronal connections during development, but their mechanistic basis remains poorly understood. Here we report that beta-amyloid precursor protein (APP) and death receptor 6 (DR6, also known as TNFRSF21) activate a widespread caspase-dependent self-destruction program. DR6 is broadly(More)