Marc Schmidt-Supprian

Learn More
The I kappa B kinase (IKK), consisting of the IKK1 and IKK2 catalytic subunits and the NEMO (also known as IKK gamma) regulatory subunit, phosphorylates I kappa B proteins, targeting them for degradation and thus inducing activation of NF-kappa B (reviewed in refs 1, 2). IKK2 and NEMO are necessary for NF-kappa B activation through pro-inflammatory signals.(More)
MicroRNAs are small RNA species involved in biological control at multiple levels. Using genetic deletion and transgenic approaches, we show that the evolutionarily conserved microRNA-155 (miR-155) has an important role in the mammalian immune system, specifically in regulating T helper cell differentiation and the germinal center reaction to produce an(More)
A20 (TNFAIP3) is a protein that is involved in the negative feedback regulation of NF-κB signaling in response to specific proinflammatory stimuli in different cell types and has been suggested as a susceptibility gene for rheumatoid arthritis. To define the contribution of A20 to rheumatoid arthritis pathology, we generated myeloid-specific A20-deficient(More)
Nuclear factor (NF)-␬ B proteins play crucial roles in immune responses and cellular survival. Activation of NF-␬ B is mediated by the I ␬ B kinase (IKK) complex, which is composed of two kinases, IKK1 and IKK2, and a regulatory subunit termed NF-␬ B essential modulator (NEMO). IKK2-and NEMO-deficient mice die at early embryonic stages. We therefore used(More)
The substitution of one amino acid in the Roquin protein by the sanroque mutation induces a dramatic autoimmune syndrome in mice. This is believed to occur through ectopic expression of inducible T cell co-stimulator (ICOS) and unrestrained differentiation of follicular T helper cells, which induce spontaneous germinal center reactions to self-antigens. In(More)
A20 is a nuclear factor kappaB (NF-kappaB) target gene that encodes a ubiquitin-editing enzyme that is essential for the termination of NF-kappaB activation after tumor necrosis factor (TNF) or microbial product stimulation and for the prevention of TNF-induced apoptosis. Mice lacking A20 succumb to inflammation in several organs, including the intestine,(More)
Correct classification of cancer patients into subtypes is a prerequisite for acute diagnosis and effective treatment. Currently this classification relies mainly on histological assessment, but gene expression analysis by microarrays has shown great promise. Here we show that high accuracy, quantitative proteomics can robustly segregate cancer subtypes(More)
Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here, we describe a survival signaling pathway activated in stromal cells by contact to B cells from patients with chronic lymphocytic leukemia (CLL). The expression of protein kinase C (PKC)-βII and the subsequent activation of NF-κB in bone(More)
Obesity and associated metabolic disturbances, such as increased circulating fatty acids cause prolonged low grade activation of inflammatory signaling pathways in liver, skeletal muscle, adipose tissue and even in the CNS. Activation of inflammatory pathways in turn impairs insulin signaling, ultimately leading to obesity-associated type 2 diabetes(More)
The canonical NF-κB pathway is a driving force for virtually all aspects of inflammation. Conversely, the role of the noncanonical NF-κB pathway and its central mediator NF-κB-inducing kinase (NIK) remains poorly defined. NIK has been proposed to be involved in the formation of T(H)17 cells, and its absence in T(H) cells renders them incapable of inducing(More)