Marc Scherer

Learn More
Electromechanical force derived from the soma of the outer hair cell has long been postulated as the basis of the exquisite sensitivity of the cochlea. The problem with this postulate is that the electrical source and mechanical load for the electromechanical outer hair cell might be severely attenuated and phase-shifted by the electrical impedance of the(More)
An innovative method is presented to measure the mechanical driving point impedance of biological structures up to at least 40 kHz. The technique employs an atomic force cantilever with a ferromagnetic coating and an external magnetic field to apply a calibrated force to the cantilever. Measurement of the resulting cantilever velocity using a laser Doppler(More)
Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Abstract— This(More)
  • Miguel De La, Torre Rodríguez, Marc Scherer, David Whitley, Frank Reyer
  • 2014
Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Abstract—This paper(More)
By using an analogy between the magnetization of a paramagnetic material in an external magnetic field and the electric polarization of the lateral wall of outer hair cells in response to the transmembrane potential, we show that, based on experimental data on the charge transfer across the membrane, it is impossible to make a statement about the number of(More)
The outer hair cells are responsible for the exquisite sensitivity, frequency selectivity and dynamic range of the cochlea. These cells are part of a mechanical feedback system involving the basilar membrane and tectorial membrane. Transverse displacement of the basilar membrane results in relative motion between the tectorial membrane and the reticular(More)
Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Abstract—This paper(More)
Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Abstract—Recent(More)
  • Göran Andersson, Marc Scherer, Andreas Ulbig, Mohajerin Esfahani, Marcus Hildmann, Robin Vujanic +2 others
  • 2012
The successful operation of interconnected power systems requires the balance of electricity generation and consumption. This is performed by frequency control that comprises three level control processes known as primary, secondary, and tertiary control. First, primary control stabilizes frequency within some seconds. Next, secondary control keeps the(More)