Learn More
We present the 2016 ChaLearn Looking at People and Faces of the World Challenge and Workshop, which ran three competitions on the common theme of face analysis from still images. The first one, Looking at People, addressed age estimation, while the second and third competitions, Faces of the World, addressed accessory classification and smile and gender(More)
Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper(More)
Following previous series on Looking at People (LAP) challenges [6, 5, 4], ChaLearn ran two competitions to be presented at CVPR 2015: action/interaction spotting and cultural event recognition in RGB data. We ran a second round on human activity recognition on RGB data sequences. In terms of cultural event recognition, tens of categories have to be(More)
Following previous series on Looking at People (LAP) challenges [1], [2], [3], in 2015 ChaLearn runs two new competitions within the field of Looking at People: age and cultural event recognition in still images. We propose the first crowd-sourcing application to collect and label data about apparent age of people instead of the real age. In terms of(More)
Recent methods for facial landmark location perform well on close-to-frontal faces but have problems in generalising to large head rotations. In order to address this issue we propose a second order linear regression method that is both compact and robust against strong rotations. We provide a closed form solution, making the method fast to train. We test(More)
  • 1