Learn More
The molecular mechanism of neural induction is still unknown and the identity of the natural inducer remains elusive. It has been suggested that both the protein kinase C and cAMP signal transduction pathways may be involved in mediating its action. Here we provide evidence that Ca2+ is implicated in the process of transduction of the neuralizing signal. We(More)
Plasma membrane-bound voltage-dependent calcium channels may couple the perception of an initial stimulus to a regulated pathway for calcium influx. The activities of these channels have been shown to be very low and highly unstable but may be recruited by large-predepolarizing pulses, according to a process referred to as recruitment. By combining(More)
Through the injection of f-aequorin (a calcium-sensitive bioluminescent reporter) into the dorsal micromeres of 8-cell stage Xenopus laevis embryos, and the use of a Photon Imaging Microscope, distinct patterns of calcium signalling were visualised during the gastrulation period. We present results to show that localised domains of elevated calcium were(More)
In intact Xenopus embryos, an increase in intracellular Ca(2+) in the dorsal ectoderm is both necessary and sufficient to commit the ectoderm to a neural fate. However, the relationship between this Ca(2+) increase and the expression of early neural genes is as yet unknown. In intact embryos, studying the interaction between Ca(2+) signaling and gene(More)
BACKGROUND Synaptic plasticity associated with an important wave of gene transcription and protein synthesis underlies long-term memory processes. Calcium (Ca2+) plays an important role in a variety of neuronal functions and indirect evidence suggests that it may be involved in synaptic plasticity and in the regulation of gene expression correlated to(More)
In amphibia, noggin, one of the neural inducers expressed in the Spemann organizer, acts by neutralizing the effects of bone morphogenetic protein-4 (BMP-4). It is shown that noggin is able to activate L-type calcium channels. The fos proto-oncogene is known to be induced within minutes by calcium signaling. Here it is reported that in animal cap explants(More)
In amphibian embryos the central nervous system derives from the dorsal region of the ectoderm. Molecular studies led to the formulation of the "neural default model" in which neural development is under the inhibitory control of members of the BMP family. These growth factors also act as epidermis inducers. The neural fate is revealed by factors secreted(More)
In Pleurodeles waltl and Ambystoma mexicanum, which exhibit physiological polyspermy, the membrane potential in most eggs did not change in any consistent pattern during 45 min after fertilization; in some cases, a slow hyperpolarization began 5 to 15 min after insemination and continued for 10-15 min. These eggs then slowly depolarized, reaching a stable(More)
We have previously shown that an increase in intracellular Ca2+ is both necessary and sufficient to commit ectoderm to a neural fate in Xenopus embryos. However, the relationship between this Ca2+ increase and the expression of early neural genes has yet to be defined. Using a subtractive cDNA library between untreated and caffeine-treated animal caps,(More)