Learn More
This paper presents the systems developed by LIUM and CVC for the WMT16 Multimodal Machine Translation challenge. We explored various comparative methods, namely phrase-based systems and attentional recurrent neural networks models trained using monomodal or multimodal data. We also performed a human evaluation in order to estimate the usefulness of(More)
Part detection is an important aspect of object recognition. Most approaches apply object proposals to generate hundreds of possible part bounding box candidates which are then evaluated by part classifiers. Recently several methods have investigated directly regressing to a limited set of bounding boxes from deep neural network representation. However, for(More)
Object detection with deep neural networks is often performed by passing a few thousand candidate bounding boxes through a deep neural network for each image. These bounding boxes are highly correlated since they originate from the same image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which(More)
One direct consequence of recent advances in digital visual data generation and the direct availability of this information through the World-Wide Web, is a urgent demand for efficient image retrieval systems. The disclosure of the content of these millions of photos available on the internet is of great importance. The objective of image retrieval is to(More)
This paper describes the monomodal and multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT17 Shared Task on Multimodal Translation. We mainly explored two multimodal architectures where either global visual features or convolutional feature maps are integrated in order to benefit from visual context. Our final systems ranked(More)
Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often(More)
  • 1