Marc Maresca

Learn More
Mycotoxins are fungal secondary metabolites contaminating food and causing toxicity to animals and humans. Among the various mycotoxins found in crops used for food and feed production, the trichothecene toxin deoxynivalenol (DON or vomitoxin) is one of the most prevalent and hazardous. In addition to native toxins, food also contains a large amount of(More)
Deoxynivalenol (DON) is a mycotoxin belonging to the tricothecene family that has many toxic effects in animals, including diarrhea and weight loss. Using the human epithelial intestinal cell line HT-29-D4 as an in vitro model, we studied the effect of DON on the uptake of different classes of nutrients, including sugars, amino acids and lipids. At low(More)
Mycotoxins are fungal metabolites able to affect the functions of numerous tissues and organs in animals and humans, including intestinal and immune systems. However, the potential link between exposure to some mycotoxins and human chronic intestinal inflammatory diseases, such as celiac and Crohn's diseases or ulcerative colitis, has not been investigated.(More)
Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier(More)
Patulin is a mycotoxin mainly found in apple and apple products. In addition to being toxic for animals, mutagenic, carcinogenic and teratogenic, patulin induces intestinal injuries, including epithelial cell degeneration, inflammation, ulceration, and hemorrhages. In a study of the cellular mechanisms associated with the intestinal toxicity of patulin, two(More)
Ochratoxin A (OTA) is a mycotoxin that contaminates cereals and animal feed and causes nephropathy to a variety of animal species. OTA is also known as a potent immunotoxic, teratogenic, and carcinogenic mycotoxin. In addition, OTA ingestion induces intestinal injuries, including inflammation and diarrhea. With the aim to study the cellular mechanisms(More)
The V3 loop of the human immunodeficiency virus (HIV)-1 surface envelope glycoprotein gp120 is a sphingolipid-binding domain mediating the attachment of HIV-1 to plasma membrane microdomains (rafts). Sphingolipid-induced conformational changes in gp120 are required for HIV-1 fusion. Galactosylceramide and sphingomyelin have been detected in highly purified(More)
The thyroid-stimulating hormone/thyrotropin (TSH) is the most relevant hormone in the control of thyroid gland physiology in adulthood. TSH effects on the thyroid gland are mediated by the interaction with a specific TSH receptor (TSHR). We studied the role of TSHTSHR signaling on gland morphogenesis and differentiation in the mouse embryo using mouse lines(More)
Enteropathogenic Escherichia coli (EPEC) infection of the human small intestine induces severe watery diarrhoea linked to a rather weak inflammatory response despite EPEC's in vivo capacity to disrupt epithelial barrier function. Here, we demonstrate that EPEC flagellin triggers the secretion of the pro-inflammatory cytokine, interleukin (IL)-8, from small(More)
Glycosphingolipids from human erythrocytes mediate CD4-dependent fusion with cells expressing human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins. To identify the glycosphingolipid(s) which participates in the fusion process, we have analyzed the interaction of HIV-1 gp120 (X4 and R5X4 isolates) with reconstituted membrane microdomains of(More)