Marc Maraschek

Learn More
The efficiency of generating a helical current in magnetic islands for the purpose of suppression of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) is studied experimentally in the ASDEX Upgrade tokamak. It is found that the efficiency of generating helical current by continuous current drive in a rotating island drops(More)
A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a(More)
Time-resolved energy and pitch angle measurements of fast-ion losses correlated in frequency and phase with high-frequency magnetohydrodynamic perturbations have been obtained for the first time in a magnetic fusion device and are presented here. A detailed analysis of fast-ion losses due to toroidal Alfvén eigenmodes has revealed the existence of a new(More)
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfvén waves in a magnetically confined fusion plasma. While single toroidal Alfvén eigenmodes (TAE) and Alfvén cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to(More)
The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma(More)
This is a preprint of a paper intended for presentation at a scientific meeting. Because of the provisional nature of its content and since changes of substance or detail may have to be made before publication, the preprint is made available on the understanding that it will not be cited in the literature or in any way be reproduced in its present form. The(More)
In the ASDEX Upgrade tokamak, high poloidal beta up to beta(pol) = 3 at the Greenwald density with H-mode confinement has been reached. Because of the high beta, the plasma current is driven almost fully noninductively, consisting of 51% bootstrap and 43% neutral beam driven current. To reach these conditions the discharge is operated at low plasma current(More)
Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To(More)
First experiments with nonaxisymmetric magnetic perturbations, toroidal mode number n=2, produced by newly installed in-vessel saddle coils in the ASDEX Upgrade tokamak show significant reduction of plasma energy loss and peak divertor power load associated with type-I edge localized modes (ELMs) in high-confinement mode plasmas. ELM mitigation is observed(More)
Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result in intermediate mode number (n≅10-15) structures (filaments)(More)